Publications

Imprimir

Submitted Articles

  1. Chaves-Silva, F. W., Fernández-Cara, E., Le Balc’h, K., Machado, J. L. F., Souza, D. A., Small-time global exact controllability to the trajectories for the viscous Boussinesq systemsubmitted. link

  2. Araújo, R. K. C., Fernández-Cara, E., Souza, D. A., On the Uniform Controllability of the Inviscid and Viscous Burgers-αsubmitted. link

  3. Chaves-Silva, F. W., Ervedoza, S., Souza, D. A., Switching controls for analytic semigroups and applications to parabolic systemssubmitted. link
     

Published or Accepted Articles


2020

  1. Fernández-Cara, E.Machado, J. L. F.Souza, D. A., Non null controllability of Stokes equations with memory, accepted in ESAIM: Control, Optimisation and Calculus of Variations26 (72), (2020). doi: https://doi.org/10.1051/cocv/2019067 

  2. Chaves-Silva, F. W.Souza, D. A., Zhang, C.Observability inequalities on measurable sets for the Stokes system and applications, SIAM Journal on Control and Optimization58(4), pp 2188–2205 (2020). doi: 10.1137/18M117652X

  3. Araújo, R. K. C.Fernández-Cara, E.Souza, D. A., On some Geometric Inverse Problems for Nonscalar Elliptic Systems, Journal of Differential Equations, 269 (11), pp 9123-9143 (2020). doi: 10.1016/j.jde.2020.06.040

  4. Chaves-Silva, F.-W., Souza, D. A., On the controllability for some Sobolev-Galpern type equations, Journal of Differential Equations 268 (4), pp 1633-1657 (2020). doi: 10.1016/j.jde.2019.09.005

                                                                                  2019

  5. Fernández-Cara, E., Souza, D. A.Remarks on the control of the viscous Camassa-Holm equation, Trends in Control Theory and Partial Differential EquationsSpringer INdAM Series. Special volume in honor of Piermarco Cannarsa for his 60th birthday, 32, pp 123-138 (2019). doi: 10.1007/978-3-030-17949-6  

                                                                                  2018

  6. Kunisch, K., Souza, D. A., On the Control for the One-Dimensional Monodomain Equations with Moving Controls, Journal de Mathématiques Pures et Appliquées117 (9), pp 94-122 (2018). doi: 10.1016/j.matpur.2018.05.003

                                                                                  2017

  7. Münch, A., Souza, D. A., Inverse problems for linear parabolic equations using mixed formulations - Part 1: Theoretical analysis, Journal of Inverse and Ill-Posed Problems, 25(4), pp. 445-468 (2017). doi: 10.1515/jiip-2015-0112

  8. Fernández-Cara, E.Münch, A., Souza, D. A., On the 2D numerical controllability: Heat equation, Stokes equation and Navier-Stokes equations, Journal of Scientific Computing, 70 (2), pp 819-858 (2017). doi: 10.1007/s10915-016-0266-x

                                                                                  2016

  9. Fernández-Cara, E.Santos, M. C., Souza, D. A., Boundary controllability of incompressible Euler fluids with Boussinesq heat effects, Mathematics of Control, Signals, and Systems, 28 (7), (2016). doi:10.1007/s00498-015-0158-x

  10. Münch, A., Souza, D. A., A mixed formulation for the direct approximation of L^2-weighted controls for the linear heat equation, Advances in Computational Mathematics, 42(1), pp. 85-125 (2016). doi: 10.1007/s10444-015-9412-5

                                                                                  2014

  11. Araruna, F. D.Fernández-Cara, E., Souza, D. A., Uniform local null control of the Leray-α model, ESAIM: Control, Optimisation and Calculus of Variations, 20(04), pp 1181-1202 (2014). doi: http://dx.doi.org/10.1051/cocv/2014011 

                                                                                  2013

  12. Araruna, F. D.Fernández-Cara, E.Souza, D. A., On the controllability of the Burgers-α modelAdvances in Differential Equations, 18(9/10), pp 935 - 954 (2013). link

                                                                                  2012

  13. Fernández-Cara, E., Souza, D. A., On the control of some coupled systems of the Boussinesq kind with few controlsMathematical Control Related Fields, 2, pp 121 - 140 (2012). doi:10.3934/mcrf.2012.2.121