APROXIMAÇÕES DIOFANTINAS E FRAÇÕES CONTÍNUAS

RICARDO T. BORTOLOTTI

1. Introdução

Arquimedes considerou a fração $\frac{22}{7}$ para aproximar $\pi,$ o número $\frac{22}{7}$ está muito mais próximo de π do que a usual aproximação $3,1=\frac{31}{10}.$ Uma aproximação melhor é $\frac{355}{113},$ que está mais próxima de π do que a fração $3,141592=\frac{3141592}{1000000}.$

Isso se deve ao fato de que as aproximações $\frac{22}{7}$ e $\frac{355}{113}$ são obtidas através da fração contínua de π , enquanto que a escolha da base 10 para representar números é uma escolha artificial e nem sempre dá as melhores aproximações para números irracionais através de números racionais.

A Seção 2 está dedicada para o estudo de Aproximações Diofantinas. Enunciaremos dois teoremas importantes sobre aproximações diofantinas (Dirichlet e Kronecker) e colocaremos problemas que podem ser resolvidos com o auxílio desses Teoremas.

A Seção 3 é sobre Frações Contínuas. Apresentaremos o Algoritmo da Fração Contínua; listaremos propriedades das frações obtidas por esse algoritmo, chamadas de reduzidas, as quais justificam porque as frações contínuas são objetos que dão as melhores aproximações diofantinas.

Como o nosso foco é a resolução de problemas, as demonstrações foram omitidas, sendo indicadas as referências no final para um estudo completo.

2. Aproximações Diofantinas

Em geral, para cada número real α e inteiro q, existe um inteiro p tal que

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q} \tag{1}$$

Para verificar isso, basta dividir \mathbb{R} em intervalos da forma $\left[\frac{p}{q},\frac{p+1}{q}\right)$ e considerar o p correspondente ao intervalo que contém α . O valor de $|\alpha-\frac{p}{q}|$ é chamada do **erro**, e o estudo das **aproximações diofantinas** corresponde a dar estimativas (superiores e inferiores) para o erro. Por exemplo, em (1) o erro é pelo menos $\frac{1}{q}$.

Uma estimativa melhor é dada pelo Teorema de Dirichlet, o qual diz que prodemos aproximar α por infinitas frações $\frac{p}{q}$ com erro pelo menos da ordem $\frac{1}{q^2}$ (que é muito menor quando q é grande).

2.1. Teoremas de Dirichlet e Kronecker.

Theorem 1 (Dirichlet). Dado um número irracional α , existem infinitos inteiros p e q tais que

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2} \tag{2}$$

Uma consequência do Teorema de Dirichlet é obtido multiplicanda (2) por q: existem infinitos inteiros p e q tais que $|q\alpha - p| < 1/q$, o que é equivalente a dizer que a parte fracionária de $q\alpha$ é tão pequena quanto quisermos para infinitos q's. Uma versão mais forte desse fato é o seguinte:

Theorem 2 (Kronecker). Se α é um número irracional, então a sequência $\{n\alpha\}_{n\in\mathbb{N}}$ é densa em [0,1].

O Teorema de Kronecker admite um versão multidimensional quando as coordenadas de $\overrightarrow{\alpha}$ são racionalmente independentes. Dizemos que um vetor $\overrightarrow{\alpha} = (\alpha_1, \cdots, \alpha_n)$ tem coordenadas racionalmente independentes se não existem inteiros m_1, \cdots, m_n não todos nulos para os quais $m_1\alpha_1 + \cdots + m_n\alpha_n$ é inteiro.

Theorem 3 (Kronecker multidimensional). Se $\overrightarrow{\alpha} \in \mathbb{R}^d$ tem coordenadas racionalmente independentes, então a sequência $\{n \overrightarrow{\alpha}\}_{n \in \mathbb{N}}$ é densa em $[0,1]^d$.

Os Teoremas de Dirichlet e Kronecker são interessantes para resolver problemas olímpicos relacionados com aproximações diofantinas, como os seguintes:

Problema 1. Existe uma potência de 2 cujos primeiros 2017 dígitos são iguais a

Dica: Aplique o Teorema de Kronecker para $\alpha = \log_{10} 2$.

Problema 2. Dado qualquer inteiros positivos N e M, existe uma potência de M cujos primeiros dígitos correspondem ao número N.

Problema 3. Existe algum inteiro n para o qual os primeiros 2017 dígitos de 2^n são iguais a 3 e os primeiros 2017 dígitos de 3^n são iguais a 2.

Problema 4. Prove que $\limsup_{n\to\infty}\cos^n(n\alpha)=1$ para qualquer $\alpha\in\mathbb{R}$.

Dica: A aproximação entre $\cos x$ e 1 quando $x \to 0$ é da ordem de x^2 .

- 2.2. O Problema 6 da IMO de 1991. O Problema 6 da IMO costuma ser, a cada ano, interessante e difícil. É o problema mais difícil dos dois dias e nem mesmo todos os medalhistas de ouro o resolvem. Costumam aparecer várias soluções criativas para estes problemas e, às vezes, anos depois seguem aparecem novas soluções.
- O Problema 6 da IMO de 1991, no qual é pedido para demonstrar a existência de uma sequência com satisfazendo certa desigualdade entre os termos, pode ser resolvido construindo tal sequência diretamente. Entretanto, este problema admite também uma solução criativa usando aproximações contínuas de \sqrt{D} .

Problema 5. Considere a e b inteiros e D um inteiro positivo que não é quadrado perfeito, prove que

$$|a\sqrt{D} - b| \ge \frac{1}{a\sqrt{D} - b}$$

Problema 6 (Prova de Seleção para a Cone Sul 2003). Sendo a e b inteiros positivos, prove que

$$|a\sqrt{2} - b| > \frac{1}{2a+b}$$

Problema 7 (Problema 6 da IMO de 1991). Uma sequência infinita x_0, x_1, x_2, \cdots de números reais é dita limitada quando existe uma constante C > 0 tal que $|x_n| \le$

C para todo $n \ge 0$. Dado um real a > 1, prove que existe uma sequência infinita limitada x_0, x_1, x_2, \cdots tal que

$$|x_i - x_j||i - j|^a \ge 1$$

para todos i, j inteiro não negativos distintos.

Dica: Tome $\alpha = \sqrt{D}$ e considere $x_n = K\{n\alpha\}$ para algum número K suficientemente grande. A desigualdade do exercício anterior pode ser útil.

2.3. Problemas.

Problema 8 (Dirichlet k-dimensional). Sejam $\alpha_1, \alpha_2, \dots, \alpha_k$ reais. Prove que para todo inteiro positivo N existem r, m_1, m_2, \dots, m_k inteiros, não todos nulos, com $|m_i| \leq N$ para todo $i \leq k$, tais que

$$|m_1\alpha_1 + \dots + m_k\alpha_k - r| < \frac{1}{N^k}$$

Problema 9. Mostre que se α e β são números irracionais positivos satisfazendo $\frac{1}{\alpha} + \frac{1}{\beta} = 1$, então as sequências

$$\lfloor \alpha \rfloor, \lfloor 2\alpha \rfloor, \lfloor 3\alpha \rfloor, \cdots \qquad e \qquad \lfloor \beta \rfloor, \lfloor 2\beta \rfloor, \lfloor 3\beta \rfloor, \cdots$$

juntas contém todo inteiro positivo exatamente uma vez.

Problema 10. Sejam a, b, c inteiros não todos nulos. Mostre que

$$\frac{1}{4a^2+3b^2+2c^2} \leq |\sqrt[3]{4}a + \sqrt[3]{2}b + c|$$

Problema 11. Mostre que a sequência $a_n = \lfloor n\sqrt{2} \rfloor$ contém um número infinito de termos que são potências de 2.

Problema 12 (OBM-U - 2014 (Problema 6, 2a fase)). Considere um número real α e constantes b > 0 e $\gamma \ge 1$ tais que para quaisquer p e q inteiros com $q \ge 1$ vale

$$|q\alpha - p| \ge \frac{b}{q^{\gamma}}.$$

Prove que existe uma constante C>0 tal que, para todo inteiro $N\geq 1,$ o conjunto

$$X_N = \{ m\alpha - \lfloor m\alpha \rfloor | m \in \mathbb{Z}, 0 \le m \le CN^{\gamma} \}$$

tem a propriedade de que, para todo $x \in [0,1]$, existe $y \in X_n$ com |x-y| < 1/N.

Problema 13 (CIIM - 2014). a) Seja $\{x_n\}_{n\geq 1}$ uma sequência com $x_n \in [0,1]$ para todo $n\geq 1$. Prove que existe C>0 tal que, para todo inteiro positivo r, existem $m\geq 1$ e n>m+r tais que $(n+m)|x_n-x_m|\leq C$.

b) Prove que, para todo C > 0, existem uma sequência $\{x_n\}$ com $x_n \in [0,1]$ para todo $n \ge 1$ e um inteiro positivo r tais que, se $m \ge 1$ e n > m + r então $(n-m)|x_n - x_m| > c$.

2.4. Aplicação: Inteiros algébricos e número transcendentais. As aproximações diofantinas também tem aplicações no estudo de raízes de polinômios.

Dizemos que α é um **inteiro algébrico** se é raiz de algum polinômio p(x) com coeficientes inteiros, dizemos ainda que α é um **inteiro algébrico de grau** n o polinômio p(x) com coeficientes inteiros que tem α como raiz de menor grau tem grau n. Chamamos de **números transcendentes** aqueles que não são inteiros algébricos.

Para inteiros algébricos de grau n, as melhores aproximações diofantinas são de ordem $\frac{1}{q^n}$, conforme diz o seguinte problema.

Problema 14. Seja p(x) um polinômio de grau n com coeficientes inteiros e $\alpha \in \mathbb{R}$ uma raiz de p(x), então existe alguma constante C > 0 tal que

$$\left|\alpha - \frac{p}{q}\right| > \frac{C}{q^n} \tag{3}$$

para todos inteiros p e q.

Note que a desigualdade (3) está na direção contrária da desigualdade dada pelo Teorema de Dirichlet, ela está dizendo que α pode ser aproximado por racionais mas "não muito bem aproximado assim".

Problema 15. Considere a constante Liouvillle $c = \sum_{n=0}^{\infty} \frac{1}{10^{n!}}$. Usando o resultado do problema acima, demonstre que c é um número transcendente.

Problema 16. Dado qualquer inteiro k, defina $x = \sum_{n=0}^{\infty} \frac{1}{k^{n!}}$. Demonstre que x é um número transcendente.

É sabido que o conjunto dos números algébricos é enumerável e, portanto, "quase todos" os números reais são trascendentes. Podemos dividir o conjunto dos números transcendentes em dois subconjuntos: os números bem aproximados por racionais (números de Liouville) e o conjunto dos números mal aproximados por racionais (números diofantinos). Também é sabido que o conjunto dos números de Liouville tem medida nula, portanto "quase todos" os números reais são números diofantinos.

Mais precisamente, as definições e os fatos no parágrafo acima são estes:

Definição. Um número $\alpha \in \mathbb{R}$ é dito um **número de Lioville** se para todo inteiro $n \in \mathbb{N}$ e todo C > 0 existem inteiros p e q tais que

$$\left|\alpha - \frac{p}{q}\right| < \frac{C}{q^n} \tag{4}$$

Definição. Um número $\alpha \in \mathbb{R}$ é dito um número diofantino se existe algum inteiro $n \in \mathbb{N}$ e uma constante C > 0 tal que

$$\left|\alpha - \frac{p}{q}\right| > \frac{C}{q^n} \tag{5}$$

para todos inteiros p e q.

Definição. Dizemos que um conjunto $X \subset \mathbb{R}$ tem **medida nula** se para todo $\epsilon > 0$ existem intervalos abertos $\{I_n\}_{n \in \mathbb{N}}$ tais que $X \subset \cup_n I_n$ e a soma dos comprimentos de I_n é menor que ϵ .

Problema 17. Demonstre que o conjunto dos inteiros algébricos é enumerável.

Problema 18. Demonstre que o conjunto dos números de Liouville tem medida nula, embora seja um conjunto não-enumerável.

Problema 19. Demonstre que a constante de Liouville $c = \sum_{n=0}^{\infty} \frac{1}{10^{n!}}$ é um número de Liouville.

Problema 20. Demonstre que todo número de Liouville é trascendente.

2.5. Curiosidade: O Teorema de Weyl. O Teorema de Kronecker diz que se α é irracional (ou $\to \alpha$ tem coordenadas racionalmente independentes) então $\{n\alpha \ (\text{ou}\ \{n\to\alpha\})$ "se espalha por todo" o conjunto [0,1] (ou $[0,1]^n$). O Teorema de Weyl dá uma informação estatística mais forte ainda: a sequência se distribui de maneira uniforme.

Definição. Considere uma sequência $\{x_n\}_{n\in\mathbb{N}}$ contida em [0,1] (ou $[0,1]^n$). Dizemos que $\{x_n\}$ é uma sequencia **uniformemente distribuída** (ou **equidistribuída**) se para qualquer intervalo fechado I (ou paralelepípedo retangular I), temos:

$$\lim_{n \to \infty} \frac{\#\{j | 1 \le j \le n \text{ tais que } x_j \in I\}}{n} = m(I)$$
 (6)

aonde m(I) é o comprimento de I (ou volume de I).

A expressão (6) diz que a média da quantidade de x_j 's que pertencem a I, com j entre 1 e n, é exatamente a medida de I! O Teorema de Weyl pode ser entendido como uma versão estatística do Teorema de Kronecker.

Theorem 4 (Weyl). Seja $\overrightarrow{\alpha} \in \mathbb{R}^d$ um vetor com coordenadas racionalmente independentes. Então a sequência $\{n\overrightarrow{\alpha}\}_n$ é uniformemente distribuída em $[0,1]^d$.

3. Frações Contínuas

3.1. O Algoritmo da Fração contínua. Dado um números $x \in \mathbb{R}$. Definimos inteiros a_n recursivamente por:

$$\alpha_0 = x \quad , \quad a_0 = \lfloor \alpha_0 \rfloor$$

$$\alpha_{n+1} = \frac{1}{\{\alpha_n\}} \quad , \quad a_{n+1} = \lfloor \alpha_{n+1} \rfloor.$$

Essa recorrência fornece um algoritmo com entrada x e saída a sequência a_0, a_1, a_2, \cdots . Se α_n for um inteiro então paramos o algoritmo nessa etapa. Assim temos:

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}$$

A fração acima é a **fração continua** de x e é denotada por $[a_0; a_1, a_2, \cdots]$. A cada x associamos uma fração $\frac{p_n}{q_n} = [a_0.a_1, a_2, \cdots, a_n]$, a qual é chamada de **reduzida** de x.

3.2. Expansão finita e o Algoritmo de Euclides. Se $x=\frac{p}{q}$ é racional, então o algoritmo pára em algum momento e os termos a_1, a_2, \cdots, a_n obtidos são os mesmos que aparecem no Algoritmo de Euclides (aquele para encontrar o mdc entre $p \in q$). Isso porque o Algoritmo de Euclides dá:

$$\begin{split} p &= a_0 q + r_1 \quad , \quad 0 \leq r_1 \leq q \\ q &= a_1 r_1 + r_2 \quad , \quad 0 \leq r_2 \leq r_1 \\ r_1 &= a_1 r_2 + r_3 \quad , \quad 0 \leq r_3 \leq r_2 \\ &\vdots \\ r_n &= a_n r_{n+1} \end{split}$$

Desenvolvendo o algoritmo da fração contínua, vemos que o a_n 's que aparecem são os mesmos a_n 's acima:

smos
$$a_n$$
 s acima:
$$\frac{p}{q} = a_0 + \frac{1}{\frac{q}{r_1}} = a_0 + \frac{1}{a_1 + \frac{1}{\frac{r_1}{r_2}}} = \dots = a_0 + \frac{1}{a_1 + \frac{1}{1 + \frac{1}{\dots + \frac{1}{a_n}}}} \tag{7}$$

Problema 21. Calcule as seguintes frações contínuas:

- a) $\frac{343}{31} = [11; 15, 2].$ b) $\sqrt{2} = [1; 2, 2, \cdots].$ c) $\frac{1+\sqrt{5}}{2} = [1; 1, 1, \cdots].$

Duas frações contínuas importantes, a saber, são:

$$\pi = [3, 7, 15, 1, 292, 1, \cdots]$$
 e $e = [2, 1, 2, 1, 1, 4, 1, \cdots, 1, 2n, 1, \cdots]$

Sobre o Algoritmo das Frações Contínuas, conforme os a_n 's obtidos sejam finitos ou periódicos, temos estas 2 propriedades que os caracterizam:

Proposição 1. A expansão de x em frações contínuas é finita se, e somente se, x é um número racional.

Proof. Sendo
$$x = \frac{p}{q}$$
, segue do Algoritmo de Euclides, conforme (7).

Proposição 2. A expansão de x em frações contínuas é periódica se, e somente se, x é um número irracional raiz de alguma equação do segundo grau com coeficientes inteiros (isto é, $x = r + \sqrt{s}$ para algum $r, s \in \mathbb{Q}$).

Proof. A prova pode ser consultada em qualquer uma das referências na bibligrafia.

Problema 22. Considerando $x = [1; 1, 2, 1, 2, 1, 2, \cdots]$, encontre uma equação quadrática com coeficientes inteiros que tenha x como raiz.

3.3. Reduzidas e boas aproximações. Para cada número real α , sejam $\frac{p_n}{q_n}$ $[a_0; a_1, \cdots, a_n]$ a sequência de reduzidas.

Existem relações envolvendo p_n e q_n , que permitem demonstrar que $\frac{p_n}{q_n}$ são boas aproximações de α . Apenas enunciaremos elas e indicamos as referências da bibliografia para uma demonstração completa.

Proposição 3. Se $\alpha = [a_0; a_1, a_2, \cdots]$, então p_n e q_n satisfazem a seguinte relação de recorrência de segunda ordem:

$$p_{n+2} = a_{n+2}p_{n+1} + p_n \quad e \quad q_{n+2} = a_{n+2}q_{n+1} + q_n \tag{8}$$

com $p_0=a_0,\ p_1=a_0a_1+1,\ q_0=1,\ q_1=a_1.$ E também satisfazem a relação para todo $n\geq 0$:

$$p_{n+1}q_n - p_nq_{n+1} = (-1)^n (9)$$

Obs. Se $a_n=1$ para todo $n\geq 0$, então a recorrência (8) corresponde à recorrência da sequência de Fibonacci. Isso ocorre para a fração contínua de $\phi=\frac{1+\sqrt{5}}{2}=[1;,1,1,\cdots]$, cujas reduzidas, portanto, são $\frac{p_n}{q_n}=\frac{F_{n+1}}{F_n}$.

A recorrência (8) e a relação (9) permite trabalharmos para calcular $|\alpha - \frac{p_n}{q_n}|$, obtendo:

Proposição 4. Temos

$$\alpha - \frac{p_n}{q_n} = \frac{(-1)^n}{(\alpha_{n+1} + \beta_{n+1})q_n^2} \tag{10}$$

onde $\beta_{n+1} = \frac{q_{n+1}}{q_n}$.

Em particular vemos que $|\alpha - \frac{p_n}{q_n}| \sim \frac{1}{a_{n+1}q_n^2}$, pois $\alpha_{n+1} = \lfloor a_{n+1} \rfloor$ e $\beta_{n+1} \in (0,1)$, obtendo:

$$\frac{1}{(\alpha_{n+1}+2)q_n^2} < \left| \alpha - \frac{p_n}{q_n} \right| < \frac{1}{\alpha_{n+1}q_n^2} \tag{11}$$

Daí segue que $\alpha = \lim_{n \to \infty} \frac{p_n}{q_n}$, uma vez que $\{q_n\}$ é crescente, e segue também o Teorema de Dirichlet, provando que o algoritmo das frações contínuas fornece boas aproximações.

Com um pouco mais de esforço provamos os seguintes teoremas:

Theorem 5 (Dirichlet). Considere um número α e a sequência de reduzidas $\frac{p_n}{q_n}$, então para todo $n \geq 0$

$$\left|\alpha - \frac{p_n}{q_n}\right| < \frac{1}{q_n^2}$$

Note que este teorema acima é o Teorema de Dirichlet mencionado anteriormente, agora explicitando que a fração $\frac{p}{q}$ pode ser tomada a sequência $\frac{p_n}{q_n}$ dá as aproximações desejadas.

Theorem 6 (Lagrange). Considere um número α e a sequência de reduzidas $\frac{p_n}{q_n}$, então para todo $n \geq algum \frac{p}{q} \in \{\frac{p_n}{q_n}, \frac{p_{n+1}}{q_{n+1}}\}$ satisfaz:

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{2q^2}$$

Theorem 7 (Hurwitz-Markov). Considere um número α e a sequência de reduzidas $\frac{p_n}{q_n}$, então para todo $n \geq algum$ $\frac{p}{q} \in \{\frac{p_n}{q_n}, \frac{p_{n+1}}{q_{n+1}}, \frac{p_{n+2}}{q_{n+2}}\}$ satisfaz:

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}$$

Também é válida uma recíproca: boas aproximações vem das frações contínuas, conforme as duas proposições abaixo:

Proposição 5. Sejam α um número real e $\frac{p_n}{q_n}$ a sequência de reduzidas, então para todos inteiros p e q com $0 < q < q_n$ temos:

$$\left| \alpha - \frac{p_n}{q_n} \right| < \left| \alpha - \frac{p}{q} \right| \tag{12}$$

Proposição 6. Sejam α um número real e p,q inteiros tais que $\left|\alpha - \frac{p}{q}\right| < \frac{1}{2q^2}$, então $\frac{p}{q}$ é uma reduzida da fração contínua de α .

4. Problemas

Problema 23. Seja $\{a_n\}$ uma sequência crescente de inteiros positivos tais que para todo K existe um $n \ge 0$ tal que $a_{n+1} > Ka_n$. Mostre que $\sum 2^{-a_n}$ é um número de Liouville (e portanto é transcendente).

Problema 24. Sabendo que $e=[2;1,2,1,1,4,1,\cdots,1,2n,1,\cdots]$, prove que e é irracional.

References

- [1] Brochero, F.; Moreira, C.G.; Saldanha, N.; Tengan, E. Teoria dos números um passeio pelo mundo inteiro com primos e outros números familiares, Projeto Euclides.
- [2] Moreira, C.G. Frações Contínuas, Representações de Números e Aproximações Diofantinas.
- $[3]\,$ Beskin, N.M. Fascinating Fractions, Editora MIR.