IMC 2017, Blagoevgrad, Bulgaria

Day 1, August 2, 2017

Problem 1. Determine all complex numbers λ for which there exist a positive integer n and a real $n \times n$ matrix A such that $A^{2}=A^{T}$ and λ is an eigenvalue of A.

Problem 2. Let $f: \mathbb{R} \rightarrow(0, \infty)$ be a differentiable function, and suppose that there exists a constant $L>0$ such that

$$
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq L|x-y|
$$

for all x, y. Prove that

$$
\left(f^{\prime}(x)\right)^{2}<2 L f(x)
$$

holds for all x.

Problem 3. For any positive integer m, denote by $P(m)$ the product of positive divisors of m (e.g. $P(6)=36$). For every positive integer n define the sequence

$$
a_{1}(n)=n, \quad a_{k+1}(n)=P\left(a_{k}(n)\right) \quad(k=1,2, \ldots, 2016) .
$$

Determine whether for every set $S \subseteq\{1,2, \ldots, 2017\}$, there exists a positive integer n such that the following condition is satisfied:

For every k with $1 \leq k \leq 2017$, the number $a_{k}(n)$ is a perfect square if and only if $k \in S$.

Problem 4. There are n people in a city, and each of them has exactly 1000 friends (friendship is always symmetric). Prove that it is possible to select a group S of people such that at least $n / 2017$ persons in S have exactly two friends in S.

Problem 5. Let k and n be positive integers with $n \geq k^{2}-3 k+4$, and let

$$
f(z)=z^{n-1}+c_{n-2} z^{n-2}+\ldots+c_{0}
$$

be a polynomial with complex coefficients such that

$$
c_{0} c_{n-2}=c_{1} c_{n-3}=\ldots=c_{n-2} c_{0}=0 .
$$

Prove that $f(z)$ and $z^{n}-1$ have at most $n-k$ common roots.

