IMC 2017, Blagoevgrad, Bulgaria

Day 1, August 2, 2017

Problem 1. Determine all complex numbers λ for which there exist a positive integer n and a real $n \times n$ matrix A such that $A^2 = A^T$ and λ is an eigenvalue of A.

(10 points)

(10 points)

Problem 2. Let $f : \mathbb{R} \to (0, \infty)$ be a differentiable function, and suppose that there exists a constant L > 0 such that

$$\left|f'(x) - f'(y)\right| \le L \left|x - y\right|$$

for all x, y. Prove that

$$\left(f'(x)\right)^2 < 2Lf(x)$$

holds for all x.

Problem 3. For any positive integer m, denote by P(m) the product of positive divisors of m (e.g. P(6) = 36). For every positive integer n define the sequence

$$a_1(n) = n,$$
 $a_{k+1}(n) = P(a_k(n))$ $(k = 1, 2, \dots, 2016).$

Determine whether for every set $S \subseteq \{1, 2, ..., 2017\}$, there exists a positive integer n such that the following condition is satisfied:

For every k with $1 \le k \le 2017$, the number $a_k(n)$ is a perfect square if and only if $k \in S$. (10 points)

Problem 4. There are *n* people in a city, and each of them has exactly 1000 friends (friendship is always symmetric). Prove that it is possible to select a group *S* of people such that at least n/2017 persons in *S* have exactly two friends in *S*.

(10 points)

Problem 5. Let k and n be positive integers with $n \ge k^2 - 3k + 4$, and let

$$f(z) = z^{n-1} + c_{n-2}z^{n-2} + \ldots + c_0$$

be a polynomial with complex coefficients such that

$$c_0c_{n-2} = c_1c_{n-3} = \ldots = c_{n-2}c_0 = 0.$$

Prove that f(z) and $z^n - 1$ have at most n - k common roots.

(10 points)