IMC 2017, Blagoevgrad, Bulgaria

Day 1, August 2, 2017

Problem 1. Determine all complex numbers λ for which there exist a positive integer n and a real $n \times n$ matrix A such that $A^{2}=A^{T}$ and λ is an eigenvalue of A.
(Proposed by Alexandr Bolbot, Novosibirsk State University)
Solution. By taking squares,

$$
A^{4}=\left(A^{2}\right)^{2}=\left(A^{T}\right)^{2}=\left(A^{2}\right)^{T}=\left(A^{T}\right)^{T}=A,
$$

so

$$
A^{4}-A=0 ;
$$

it follows that all eigenvalues of A are roots of the polynomial $X^{4}-X$.
The roots of $X^{4}-X=X\left(X^{3}-1\right)$ are 0,1 and $\frac{-1 \pm \sqrt{3} i}{2}$. In order to verify that these values are possible, consider the matrices

$$
A_{0}=(0), \quad A_{1}=(1), \quad A_{2}=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), \quad A_{4}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\
0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) .
$$

The numbers 0 and 1 are the eigenvalues of the 1×1 matrices A_{0} and A_{1}, respectively. The numbers $\frac{-1 \pm \sqrt{3} i}{2}$ are the eigenvalues of A_{2}; it is easy to check that

$$
A_{2}^{2}=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)=A_{2}^{T} .
$$

The matrix A_{4} establishes all the four possible eigenvalues in a single matrix.

Remark. The matrix A_{2} represents a rotation by $2 \pi / 3$.
Problem 2. Let $f: \mathbb{R} \rightarrow(0, \infty)$ be a differentiable function, and suppose that there exists a constant $L>0$ such that

$$
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq L|x-y|
$$

for all x, y. Prove that

$$
\left(f^{\prime}(x)\right)^{2}<2 L f(x)
$$

holds for all x.
(Proposed by Jan Šustek, University of Ostrava)

Solution. Notice that f^{\prime} satisfies the Lipschitz-property, so f^{\prime} is continuous and therefore locally integrable.

Consider an arbitrary $x \in \mathbb{R}$ and let $d=f^{\prime}(x)$. We need to prove $f(x)>\frac{d^{2}}{2 L}$.
If $d=0$ then the statement is trivial.
If $d>0$ then the condition provides $f^{\prime}(x-t) \geq d-L t$; this estimate is positive for $0 \leq t<\frac{d}{L}$. By integrating over that interval,

$$
f(x)>f(x)-f\left(x-\frac{d}{L}\right)=\int_{0}^{\frac{d}{L}} f^{\prime}(x-t) \mathrm{d} t \geq \int_{0}^{\frac{d}{L}}(d-L t) \mathrm{d} t=\frac{d^{2}}{2 L}
$$

If $d<0$ then apply $f^{\prime}(x+t) \leq d+L t=-|d|+L t$ and repeat the same argument as

$$
f(x)>f(x)-f\left(x+\frac{|d|}{L}\right)=\int_{0}^{\frac{|d|}{L}}\left(-f^{\prime}(x+t)\right) \mathrm{d} t \geq \int_{0}^{\frac{|d|}{L}}(|d|-L t) \mathrm{d} t=\frac{d^{2}}{2 L}
$$

Problem 3. For any positive integer m, denote by $P(m)$ the product of positive divisors of m (e.g. $P(6)=36$). For every positive integer n define the sequence

$$
a_{1}(n)=n, \quad a_{k+1}(n)=P\left(a_{k}(n)\right) \quad(k=1,2, \ldots, 2016) .
$$

Determine whether for every set $S \subseteq\{1,2, \ldots, 2017\}$, there exists a positive integer n such that the following condition is satisfied:

For every k with $1 \leq k \leq 2017$, the number $a_{k}(n)$ is a perfect square if and only if $k \in S$. (Proposed by Matko Ljulj, University of Zagreb)

Solution. We prove that the answer is yes; for every $S \subset\{1,2, \ldots, 2017\}$ there exists a suitable n. Specially, n can be a power of 2: $n=2^{w_{1}}$ with some nonnegative integer w_{1}. Write $a_{k}(n)=2^{w_{k}}$; then

$$
2^{w_{k+1}}=a_{k+1}(n)=P\left(a_{k}(n)\right)=P\left(2^{w_{k}}\right)=1 \cdot 2 \cdot 4 \cdots 2^{w_{k}}=2^{\frac{w_{k}\left(w_{k}+1\right)}{2}},
$$

so

$$
w_{k+1}=\frac{w_{k}\left(w_{k}+1\right)}{2}
$$

The proof will be completed if we prove that for each choice of S there exists an initial value w_{1} such that w_{k} is even if and only if $k \in S$.
Lemma. Suppose that the sequences $\left(b_{1}, b_{2}, \ldots\right)$ and $\left(c_{1}, c_{2}, \ldots\right)$ satisfy $b_{k+1}=\frac{b_{k}\left(b_{k}+1\right)}{2}$ and $c_{k+1}=\frac{c_{k}\left(c_{k}+1\right)}{2}$ for $k \geq 1$, and $c_{1}=b_{1}+2^{m}$. Then for each $k=1, \ldots m$ we have $c_{k} \equiv b_{k}+2^{m-k+1}$
$\left(\bmod 2^{m-k+2}\right)$.

As an immediate corollary, we have $b_{k} \equiv c_{k}(\bmod 2)$ for $1 \leq k \leq m$ and $b_{m+1} \equiv c_{m+1}+1$ $(\bmod 2)$.
Proof. We prove the by induction. For $k=1$ we have $c_{1}=b_{1}+2^{m}$ so the statement holds. Suppose the statement is true for some $k<m$, then for $k+1$ we have

$$
\begin{aligned}
c_{k+1} & =\frac{c_{k}\left(c_{k}+1\right)}{2} \equiv \frac{\left(b_{k}+2^{m-k+1}\right)\left(b_{k}+2^{m-k+1}+1\right)}{2} \\
& =\frac{b_{k}^{2}+2^{m-k+2} b_{k}+2^{2 m-2 k+2}+b_{k}+2^{m-k+1}}{2}= \\
& =\frac{b_{k}\left(b_{k}+1\right)}{2}+2^{m-k}+2^{m-k+1} b_{k}+2^{2 m-2 k+1} \equiv \frac{b_{k}\left(b_{k}+1\right)}{2}+2^{m-k} \quad\left(\bmod 2^{m-k+1}\right),
\end{aligned}
$$

therefore $c_{k+1} \equiv b_{k+1}+2^{m-(k+1)+1}\left(\bmod 2^{m-(k+1)+2}\right)$.

Going back to the solution of the problem, for every $1 \leq m \leq 2017$ we construct inductively a sequence $\left(v_{1}, v_{2}, \ldots\right)$ such that $v_{k+1}=\frac{v_{k}\left(v_{k}+1\right)}{2}$, and for every $1 \leq k \leq m, v_{k}$ is even if and only if $k \in S$.

For $m=1$ we can choose $v_{1}=0$ if $1 \in S$ or $v_{1}=1$ if $1 \notin S$. If we already have such a sequence $\left(v_{1}, v_{2}, \ldots\right)$ for a positive integer m, we can choose either the same sequence or choose $v_{1}^{\prime}=v_{1}+2^{m}$ and apply the same recurrence $v_{k+1}^{\prime}=\frac{v_{k}^{\prime}\left(v_{k}^{\prime}+1\right)}{2}$. By the Lemma, we have $v_{k} \equiv v_{k}^{\prime}$ $(\bmod 2)$ for $k \leq m$, but v_{m+1} and v_{m+1} have opposite parities; hence, either the sequence $\left(v_{k}\right)$ or the sequence $\left(v_{k}^{\prime}\right)$ satisfies the condition for $m+1$.

Repeating this process for $m=1,2, \ldots, 2017$, we obtain a suitable sequence $\left(w_{k}\right)$.

Problem 4. There are n people in a city, and each of them has exactly 1000 friends (friendship is always symmetric). Prove that it is possible to select a group S of people such that at least $n / 2017$ persons in S have exactly two friends in S.
(Proposed by Rooholah Majdodin and Fedor Petrov, St. Petersburg State University)
Solution. Let $d=1000$ and let $0<p<1$. Choose the set S randomly such that each people is selected with probability p, independently from the others.

The probability that a certain person is selected for S and knows exactly two members of S is

$$
q=\binom{d}{2} p^{3}(1-p)^{d-2}
$$

Choose $p=3 /(d+1)$ (this is the value of p for which q is maximal); then

$$
\begin{gathered}
q=\binom{d}{2}\left(\frac{3}{d+1}\right)^{3}\left(\frac{d-2}{d+1}\right)^{d-2}= \\
=\frac{27 d(d-1)}{2(d+1)^{3}}\left(1+\frac{3}{d-2}\right)^{-(d-2)}>\frac{27 d(d-1)}{2(d+1)^{3}} \cdot e^{-3}>\frac{1}{2017}
\end{gathered}
$$

Hence, $E(|S|)=n q>\frac{n}{2017}$, so there is a choice for S when $|S|>\frac{n}{2017}$.
Problem 5. Let k and n be positive integers with $n \geq k^{2}-3 k+4$, and let

$$
f(z)=z^{n-1}+c_{n-2} z^{n-2}+\ldots+c_{0}
$$

be a polynomial with complex coefficients such that

$$
c_{0} c_{n-2}=c_{1} c_{n-3}=\ldots=c_{n-2} c_{0}=0
$$

Prove that $f(z)$ and $z^{n}-1$ have at most $n-k$ common roots.
(Proposed by Vsevolod Lev and Fedor Petrov, St. Petersburg State University)
Solution. Let $M=\left\{z: z^{n}=1\right\}, A=\{z \in M: f(z) \neq 0\}$ and $A^{-1}=\left\{z^{-1}: z \in A\right\}$. We have to prove $|A| \geq k$.

Claim.

$$
A \cdot A^{-1}=M
$$

That is, for any $\eta \in M$, there exist some elements $a, b \in A$ such that $a b^{-1}=\eta$.
Proof. As is well-known, for every integer m,

$$
\sum_{z \in M} z^{m}= \begin{cases}n & \text { if } n \mid m \\ 0 & \text { otherwise }\end{cases}
$$

Define $c_{n-1}=1$ and consider

$$
\begin{aligned}
& \sum_{z \in M} z^{2} f(z) f(\eta z)=\sum_{z \in M} z^{2} \sum_{j=0}^{n-1} c_{j} z^{j} \sum_{\ell=0}^{n-1} c_{\ell}(\eta z)^{\ell}=\sum_{j=0}^{n-1} \sum_{\ell=0}^{n-1} c_{j} c_{\ell} \eta^{\ell} \sum_{z \in M} z^{j+\ell+2}= \\
= & \sum_{j=0}^{n-1} \sum_{\ell=0}^{n-1} c_{j} c_{\ell} \eta^{\ell} \sum_{z \in M}\left\{\begin{array}{cc}
n & \text { if } n \mid j+\ell+2 \\
0 & \text { otherwise }
\end{array}\right\}=c_{n-1}^{2} n+\sum_{j=0}^{n-2} c_{j} c_{n-2-j} \eta^{n-2-j} n=n \neq 0 .
\end{aligned}
$$

Therefore there exists some $b \in M$ such that $f(b) \neq 0$ and $f(\eta b) \neq 0$, i.e. $b \in A$, and $a=\eta b \in A$, satisfying $a b^{-1}=\eta$.

By double-counting the elements of M, from the Claim we conclude

$$
|A|(|A|-1) \geq|M \backslash\{1\}|=n-1 \geq k^{2}-3 k+3>(k-1)(k-2)
$$

which shows $|A|>k-1$.

