IMC 2017, Blagoevgrad, Bulgaria

Day 2, August 3, 2017

Problem 6. Let $f:[0 ;+\infty) \rightarrow \mathbb{R}$ be a continuous function such that $\lim _{x \rightarrow+\infty} f(x)=L$ exists (it may be finite or infinite). Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(n x) \mathrm{d} x=L
$$

Problem 7. Let $p(x)$ be a nonconstant polynomial with real coefficients. For every positive integer n, let

$$
q_{n}(x)=(x+1)^{n} p(x)+x^{n} p(x+1) .
$$

Prove that there are only finitely many numbers n such that all roots of $q_{n}(x)$ are real.
(10 points)

Problem 8. Define the sequence A_{1}, A_{2}, \ldots of matrices by the following recurrence:

$$
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad A_{n+1}=\left(\begin{array}{cc}
A_{n} & I_{2^{n}} \\
I_{2^{n}} & A_{n}
\end{array}\right) \quad(n=1,2, \ldots)
$$

where I_{m} is the $m \times m$ identity matrix.
Prove that A_{n} has $n+1$ distinct integer eigenvalues $\lambda_{0}<\lambda_{1}<\ldots<\lambda_{n}$ with multiplicities $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$, respectively.
(10 points)

Problem 9. Define the sequence $f_{1}, f_{2}, \ldots:[0,1) \rightarrow \mathbb{R}$ of continuously differentiable functions by the following recurrence:

$$
f_{1}=1 ; \quad f_{n+1}^{\prime}=f_{n} f_{n+1} \quad \text { on }(0,1), \quad \text { and } \quad f_{n+1}(0)=1
$$

Show that $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for every $x \in[0,1)$ and determine the limit function.

Problem 10. Let K be an equilateral triangle in the plane. Prove that for every $p>0$ there exists an $\varepsilon>0$ with the following property: If n is a positive integer, and T_{1}, \ldots, T_{n} are non-overlapping triangles inside K such that each of them is homothetic to K with a negative ratio, and

$$
\sum_{\ell=1}^{n} \operatorname{area}\left(T_{\ell}\right)>\operatorname{area}(K)-\varepsilon
$$

then

$$
\sum_{\ell=1}^{n} \operatorname{perimeter}\left(T_{\ell}\right)>p
$$

