IMC 2017, Blagoevgrad, Bulgaria

Day 2, August 3, 2017

Problem 6. Let $f:[0 ;+\infty) \rightarrow \mathbb{R}$ be a continuous function such that $\lim _{x \rightarrow+\infty} f(x)=L$ exists (it may be finite or infinite). Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(n x) \mathrm{d} x=L
$$

(Proposed by Alexandr Bolbot, Novosibirsk State University)
Solution 1. Case 1: L is finite. Take an arbitrary $\varepsilon>0$. We construct a number $K \geq 0$ such that $\left|\int_{0}^{1} f(n x) \mathrm{d} x-L\right|<\varepsilon$.

Since $\lim _{x \rightarrow+\infty} f(x)=L$, there exists a $K_{1} \geq 0$ such that $|f(x)-L|<\frac{\varepsilon}{2}$ for every $x \geq K_{1}$. Hence, for $n \geq K_{1}$ we have

$$
\begin{gathered}
\left|\int_{0}^{1} f(n x) \mathrm{d} x-L\right|=\left|\frac{1}{n} \int_{0}^{n} f(x) \mathrm{d} x-L\right|=\frac{1}{n}\left|\int_{0}^{n}(f-L)\right| \leq \\
\leq \frac{1}{n} \int_{0}^{n}|f-L|=\frac{1}{n}\left(\int_{0}^{K_{1}}|f-L|+\int_{K_{1}}^{n}|f-L|\right)<\frac{1}{n}\left(\int_{0}^{K_{1}}|f-L|+\int_{K_{1}}^{n} \frac{\varepsilon}{2}\right)= \\
=\frac{1}{n} \int_{0}^{K_{1}}|f-L|+\frac{n-K_{1}}{n} \cdot \frac{\varepsilon}{2}<\frac{1}{n} \int_{0}^{K_{1}}|f-L|+\frac{\varepsilon}{2} .
\end{gathered}
$$

If $n \geq K_{2}=\frac{2}{\varepsilon} \int_{0}^{K_{1}}|f-L|$ then the first term is at most $\frac{\varepsilon}{2}$. Then for $x \geq K:=\max \left(K_{1}, K_{2}\right)$ we have

$$
\left|\int_{0}^{1} f(n x) \mathrm{d} x-L\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Case 2: $L=+\infty$. Take an arbitrary real M; we need a $K \geq 0$ such that $\int_{0}^{1} f(n x) \mathrm{d} x>M$ for every $x \geq K$.

Since $\lim _{x \rightarrow+\infty} f(x)=\infty$, there exists a $K_{1} \geq 0$ such that $f(x)>M+1$ for every $x \geq K_{1}$. Hence, for $n \geq 2 K_{1}$ we have

$$
\begin{aligned}
& \int_{0}^{1} f(n x) \mathrm{d} x=\frac{1}{n} \int_{0}^{n} f(x) \mathrm{d} x=\frac{1}{n} \int_{0}^{n} f=\frac{1}{n}\left(\int_{0}^{K_{1}} f+\int_{K_{1}}^{n} f\right)= \\
= & \frac{1}{n}\left(\int_{0}^{K_{1}} f+\int_{K_{1}}^{n}(M+1)\right)=\frac{1}{n}\left(\int_{0}^{K_{1}} f-K_{1}(M+1)\right)+M+1 .
\end{aligned}
$$

If $n \geq K_{2}:=\left|\int_{0}^{K_{1}} f-K_{1}(M+1)\right|$ then the first term is at least -1 . For $x \geq K:=\max \left(K_{1}, K_{2}\right)$ we have $\int_{0}^{1} f(n x) \mathrm{d} x>M$.

Case 3: $L=-\infty$. We can repeat the steps in Case 2 for the function $-f$.

Solution 2. Let $F(x)=\int_{0}^{x} f$. For $t>0$ we have

$$
\int_{0}^{1} f(t x) \mathrm{d} x=\frac{F(t)}{t}
$$

Since $\lim _{t \rightarrow \infty} t=\infty$ in the denominator and $\lim _{t \rightarrow \infty} F^{\prime}(t)=\lim _{t \rightarrow \infty} f(t)=L$, L'Hospital's rule proves $\lim _{t \rightarrow \infty} \frac{F(t)}{t}=\lim _{t \rightarrow \infty} \frac{F^{\prime}(t)}{1}=\lim _{t \rightarrow \infty} \frac{f(t)}{1}=L$. Then it follows that $\lim \frac{F(n)}{n}=L$.

Problem 7. Let $p(x)$ be a nonconstant polynomial with real coefficients. For every positive integer n, let

$$
q_{n}(x)=(x+1)^{n} p(x)+x^{n} p(x+1)
$$

Prove that there are only finitely many numbers n such that all roots of $q_{n}(x)$ are real.
(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution.

Lemma. If $f(x)=a_{m} x^{m}+\ldots+a_{1} x+a_{0}$ is a polynomial with $a_{m} \neq 0$, and all roots of f are real, then

$$
a_{m-1}^{2}-2 a_{m} a_{m-2} \geq 0
$$

Proof. Let the roots of f be w_{1}, \ldots, w_{n}. By the Viéte-formulas,

$$
\begin{gathered}
\sum_{i=1}^{m} w_{i}=-\frac{a_{m-1}}{a_{m}}, \quad \sum_{i<j} w_{i} w_{j}=\frac{a_{m-2}}{a_{m}}, \\
0 \leq \sum_{i=1}^{m} w_{i}^{2}=\left(\sum_{i=1}^{m} w_{i}\right)^{2}-2 \sum_{i<j} w_{i} w_{j}=\left(\frac{a_{m-1}}{a_{m}}\right)^{2}-2 \frac{a_{m-2}}{a_{m}}=\frac{a_{m-1}^{2}-2 a_{m} a_{m-2}}{a_{m}^{2}} .
\end{gathered}
$$

In view of the Lemma we focus on the asymptotic behavior of the three terms in $q_{n}(x)$ with the highest degrees. Let $p(x)=a x^{k}+b x^{k-1}+c x^{k-2}+\ldots$ and $q_{n}(x)=A_{n} x^{n+k}+B_{n} x^{n+k-1}+$ $C_{n} x^{n+k-2}+\ldots$; then

$$
\begin{aligned}
& q_{n}(x)=(x+1)^{n} p(x)+x^{n} p(x+1)= \\
&=\left(x^{n}+n x^{n-1}+\frac{n(n-1)}{2} x^{n-2}+\ldots\right)\left(a x^{k}+b x^{k-1}+c x^{k-2}+\ldots\right) \\
&+ x^{n}\left(a\left(x^{k}+k x^{k-1}+\frac{k(k-1)}{2} x^{k-2}+\ldots\right)\right. \\
&\left.\quad \quad+b\left(x^{k-1}+(k-1) x^{k-2}+\ldots\right)+c\left(x^{k-2} \ldots\right)+\ldots\right) \\
&=2 a \cdot x^{n+k} \quad+((n+k) a+2 b) x^{n+k-1} \\
& \quad \quad \quad+\left(\frac{n(n-1)+k(k-1)}{2} a+(n+k-1) b+2 c\right) x^{n+k-2}+\ldots
\end{aligned}
$$

so

$$
A_{n}=2 a, \quad B_{n}=(n+k) a+2 b=\quad C_{n}=\frac{n(n-1)+k(k-1)}{2} a+(n+k-1) b+2 c .
$$

If $n \rightarrow \infty$ then

$$
B_{n}^{2}-2 A_{n} C_{n}=(n a+O(1))^{2}-2 \cdot 2 a\left(\frac{n^{2} a}{2}+O(n)\right)=-a n^{2}+O(n) \rightarrow-\infty
$$

so $B_{n}^{2}-2 A_{n} C_{n}$ is eventually negative, indicating that q_{n} cannot have only real roots.

Problem 8. Define the sequence A_{1}, A_{2}, \ldots of matrices by the following recurrence:

$$
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad A_{n+1}=\left(\begin{array}{cc}
A_{n} & I_{2^{n}} \\
I_{2^{n}} & A_{n}
\end{array}\right) \quad(n=1,2, \ldots)
$$

where I_{m} is the $m \times m$ identity matrix.
Prove that A_{n} has $n+1$ distinct integer eigenvalues $\lambda_{0}<\lambda_{1}<\ldots<\lambda_{n}$ with multiplicities $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$, respectively.
(Proposed by Snježana Majstorović, University of J. J. Strossmayer in Osijek, Croatia)
Solution. For each $n \in \mathbb{N}$, matrix A_{n} is symmetric $2^{n} \times 2^{n}$ matrix with elements from the set $\{0,1\}$, so that all elements on the main diagonal are equal to zero. We can write

$$
\begin{equation*}
A_{n}=I_{2^{n-1}} \otimes A_{1}+A_{n-1} \otimes I_{2} \tag{1}
\end{equation*}
$$

where \otimes is binary operation over the space of matrices, defined for arbitrary $B \in \mathbb{R}^{n \times p}$ and $C \in \mathbb{R}^{m \times s}$ as

$$
B \otimes C:=\left[\begin{array}{cccc}
b_{11} C & b_{12} C & \ldots & b_{1 p} C \\
b_{21} C & b_{22} C & \ldots & b_{2 p} C \\
\vdots & & & \\
b_{n 1} C & b_{12} C & \ldots & b_{n p} C
\end{array}\right]_{n m \times p s} .
$$

Lemma 1. If $B \in \mathbb{R}^{n \times n}$ has eigenvalues $\lambda_{i}, i=1, \ldots, n$ and $C \in \mathbb{R}^{m \times m}$ has eigenvalues μ_{j}, $j=1, \ldots, m$, then $B \otimes C$ has eigenvalues $\lambda_{i} \mu_{j}, i=1, \ldots, n, j=1, \ldots, m$. If B and C are diagonalizable, then $A \otimes B$ has eigenvectors $y_{i} \otimes z_{j}$, with $\left(\lambda_{i}, y_{i}\right)$ and (μ_{j}, z_{j}) being eigenpairs of B and C, respectively.
Proof 1. Let (λ, y) be an eigenpair of B and (μ, z) an eigenpar of C. Then

$$
(B \otimes C)(y \otimes z)=B y \otimes C z=\lambda y \otimes \mu z=\lambda \mu(y \otimes z)
$$

If we take (λ, y) to be an eigenpair of A_{1} and (μ, z) to be an eigenpair of A_{n-1}, then from (1) and Lemma 1 we get

$$
\begin{aligned}
A_{n}(z \otimes y) & =\left(I_{2^{n-1}} \otimes A_{1}+A_{n-1} \otimes I_{2}\right)(z \otimes y) \\
& =\left(I_{2^{n-1}} \otimes A_{1}\right)(z \otimes y)+\left(A_{n-1} \otimes I_{2}\right)(z \otimes y) \\
& =(\lambda+\mu)(z \otimes y) .
\end{aligned}
$$

So the entire spectrum of A_{n} can be obtained from eigenvalues of A_{n-1} and A_{1} : just sum up each eigenvalue of A_{n-1} with each eigenvalue of A_{1}. Since the spectrum of A_{1} is $\sigma\left(A_{1}\right)=\{-1,1\}$, we get

$$
\begin{aligned}
\sigma\left(A_{2}\right) & =\{-1+(-1),-1+1,1+(-1), 1+1\}=\left\{-2,0^{(2)}, 2\right\} \\
\sigma\left(A_{3}\right) & =\{-1+(-2),-1+0,-1+0,-1+2,1+(-2), 1+0,1+0,1+2\}=\left\{-3,(-1)^{(3)}, 1^{(3)}, 3\right\} \\
\sigma\left(A_{4}\right) & =\left\{-1+(-3),-1+\left(-1^{(3)}\right),-1+1^{(3)},-1+3,1+(-3), 1+\left(-1^{(3)}\right), 1+1^{(3)}, 1+3\right\} \\
& =\left\{-4,(-2)^{(4)}, 0^{(3)}, 2^{(4)}, 4\right\} .
\end{aligned}
$$

Inductively, A_{n} has $n+1$ distinct integer eigenvalues $-n,-n+2,-n+4, \ldots, n-4, n-2, n$ with multiplicities $\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n}$, respectively.

Problem 9. Define the sequence $f_{1}, f_{2}, \ldots:[0,1) \rightarrow \mathbb{R}$ of continuously differentiable functions by the following recurrence:

$$
f_{1}=1 ; \quad f_{n+1}^{\prime}=f_{n} f_{n+1} \quad \text { on }(0,1), \quad \text { and } \quad f_{n+1}(0)=1 .
$$

Show that $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for every $x \in[0,1)$ and determine the limit function.

Solution. First of all, the sequence f_{n} is well defined and it holds that

$$
\begin{equation*}
f_{n+1}(x)=e^{\int_{0}^{x} f_{n}(t) \mathrm{d} t} \tag{2}
\end{equation*}
$$

The mapping $\Phi: C([0,1)) \rightarrow C([0,1))$ given by

$$
\Phi(g)(x)=e^{\int_{0}^{x} g(t) \mathrm{d} t}
$$

is monotone, i.e. if $f<g$ on $(0,1)$ then

$$
\Phi(f)(x)=e^{\int_{0}^{x} f(t) \mathrm{d} t}<e^{\int_{0}^{x} g(t) \mathrm{d} t}=\Phi(g)(x)
$$

on $(0,1)$. Since $f_{2}(x)=e^{\int_{0}^{x} 1 \text { mathrmdt }}=e^{x}>1=f_{1}(x)$ on $(0,1)$, we have by induction $f_{n+1}(x)>f_{n}(x)$ for all $x \in(0,1), n \in \mathbb{N}$. Moreover, function $f(x)=\frac{1}{1-x}$ is the unique solution to $f^{\prime}=f^{2}, f(0)=1$, i.e. it is the unique fixed point of Φ in $\{\varphi \in C([0,1)): \varphi(0)=1\}$. Since $f_{1}<f$ on $(0,1)$, by induction we have $f_{n+1}=\Phi\left(f_{n}\right)<\Phi(f)=f$ for all $n \in \mathbb{N}$. Hence, for every $x \in(0,1)$ the sequence $f_{n}(x)$ is increasing and bounded, so a finite limit exists.

Let us denote the limit $g(x)$. We show that $g(x)=f(x)=\frac{1}{1-x}$. Obviously, $g(0)=$ $\lim f_{n}(0)=1$. By $f_{1} \equiv 1$ and (2), we have $f_{n}>0$ on $[0,1)$ for each $n \in \mathbb{N}$, and therefore (by (2) again) the function f_{n+1} is increasing. Since f_{n}, f_{n+1} are positive and increasing also f_{n+1}^{\prime} is increasing (due to $f_{n+1}^{\prime}=f_{n} f_{n+1}$), hence f_{n+1} is convex. A pointwise limit of a sequence of convex functions is convex, since we pass to a limit $n \rightarrow \infty$ in

$$
f_{n}(\lambda x+(1-\lambda) y) \leq \lambda f_{n}(x)+(1-\lambda) f_{n}(y)
$$

and obtain

$$
g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y)
$$

for any fixed $x, y \in[0,1)$ and $\lambda \in(0,1)$. Hence, g is convex, and therefore continuous on $(0,1)$. Moreover, g is continuous in 0 , since $1 \equiv f_{1} \leq g \leq f$ and $\lim _{x \rightarrow 0+} f(x)=1$. By Dini's Theorem, convergence $f_{n} \rightarrow g$ is uniform on $[0,1-\varepsilon]$ for each $\varepsilon \in(0,1)$ (a monotone sequence converging to a continuous function on a compact interval). We show that Φ is continuous and therefore f_{n} have to converge to a fixed point of Φ.

In fact, let us work on the space $C([0,1-\varepsilon])$ with any fixed $\varepsilon \in(0,1),\|\cdot\|$ being the supremum norm on $[0,1-\varepsilon]$. Then for a fixed function h and $\|\varphi-h\|<\delta$ we have

$$
\sup _{x \in[0,1-\varepsilon]}|\Phi(h)(x)-\Phi(\varphi)(x)|=\sup _{x \in[0,1-\varepsilon]} e^{\int_{0}^{x} h(t) \mathrm{d} t}\left|1-e^{\int_{0}^{x} \varphi(t)-h(t) \mathrm{d} t}\right| \leq C\left(e^{\delta}-1\right)<2 C \delta
$$

for $\delta>0$ small enough. Hence, Φ is continuous on $C([0,1-\varepsilon])$. Let us assume for contradiction that $\Phi(g) \neq g$. Hence, there exists $\eta>0$ and $x_{0} \in[0,1-\varepsilon]$ such that $\left|\Phi(g)\left(x_{0}\right)-g\left(x_{0}\right)\right|>\eta$. There exists $\delta>0$ such that $\|\Phi(\varphi)-\Phi(g)\|<\frac{1}{3} \eta$ whenever $\|\varphi-g\|<\delta$. Take n_{0} so large that $\left\|f_{n}-g\right\|<\min \left\{\delta, \frac{1}{3} \eta\right\}$ for all $n \geq n_{0}$. Hence, $\left\|f_{n+1}-\Phi(g)\right\|=\left\|\Phi\left(f_{n}\right)-\Phi(g)\right\|<\frac{1}{3} \eta$. On the other hand, we have $\left|f_{n+1}\left(x_{0}\right)-\Phi(g)\left(x_{0}\right)\right|>\left|\Phi(g)\left(x_{0}\right)-g\left(x_{0}\right)\right|-\left|g\left(x_{0}\right)-f_{n+1}\left(x_{0}\right)\right|>\eta-\frac{1}{3} \eta=\frac{2}{3} \eta$, contradiction. So, $\Phi(g)=g$.

Since f is the only fixed point of Φ in $\{\varphi \in C([0,1-\varepsilon]): \varphi(0)=1\}$, we have $g=f$ on $[0,1-\varepsilon]$. Since $\varepsilon \in(0,1)$ was arbitrary, we have $\lim _{n \rightarrow \infty} f_{n}(x)=\frac{1}{1-x}$ for all $x \in[0,1)$.

Problem 10. Let K be an equilateral triangle in the plane. Prove that for every $p>0$ there exists an $\varepsilon>0$ with the following property: If n is a positive integer, and T_{1}, \ldots, T_{n} are non-overlapping triangles inside K such that each of them is homothetic to K with a negative ratio, and

$$
\sum_{\ell=1}^{n} \operatorname{area}\left(T_{\ell}\right)>\operatorname{area}(K)-\varepsilon
$$

then

$$
\sum_{\ell=1}^{n} \operatorname{perimeter}\left(T_{\ell}\right)>p
$$

(Proposed by Fedor Malyshev, Steklov Math. Inst. and Ilya Bogdanov, MIPT, Moscow)
Solution. For an arbitrary $\varepsilon>0$ we will establish a lower bound for the sum of perimeters that would tend to $+\infty$ as $\varepsilon \rightarrow+0$; this solves the problem.

Rotate and scale the picture so that one of the sides of K is the segment from $(0,0)$ to $(0,1)$, and stretch the picture horizontally in such a way that the projection of K to the x axis is $[0,1]$. Evidently, we may work with the lengths of the projections to the x or y axis instead of the perimeters and consider their sum, that is why we may make any affine transformation.

Let $f_{i}(a)$ be the length of intersection of the straight line $\{x=a\}$ with T_{i} and put $f(a)=$ $\sum_{i} f_{i}(a)$. Then f is piece-wise increasing with possible downward gaps, $f(a) \leq 1-a$, and

$$
\int_{0}^{1} f(x) \mathrm{d} x \geq \frac{1}{2}-\varepsilon
$$

Let d_{1}, \ldots, d_{N} be the values of the gaps of f. Every gap is a sum of side-lengths of some of T_{i} and every T_{i} contributes to one of d_{j}, we therefore estimate the sum of the gaps of f.

In the points of differentiability of f we have $f^{\prime}(a) \geq f(a) / a$; this follows from $f_{i}^{\prime}(a) \geq$ $f_{i}(a) / a$ after summation. Indeed, if f_{i} is zero this inequality holds trivially, and if not then $f_{i}^{\prime}=1$ and the inequality reads $f_{i}(a) \leq a$, which is clear from the definition.

Choose an integer $m=\lfloor 1 /(8 \varepsilon)\rfloor$ (considering ε sufficiently small). Then for all $k=$ $0,1, \ldots,[(m-1) / 2]$ in the section of K by the strip $k / m \leq x \leq(k+1) / m$ the area, covered by the small triangles T_{i} is no smaller than $1 /(2 m)-\varepsilon \geq 1 /(4 m)$. Thus

$$
\int_{k / m}^{(k+1) / m} f^{\prime}(x) \mathrm{d} x \geq \int_{k / m}^{(k+1) / m} \frac{f(x) \mathrm{d} x}{x} \geq \frac{m}{k+1} \int_{k / m}^{(k+1) / m} f(x) \mathrm{d} x \geq \frac{m}{k+1} \cdot \frac{1}{4 m}=\frac{1}{4(k+1)}
$$

Hence,

$$
\int_{0}^{1 / 2} f^{\prime}(x) \mathrm{d} x \geq \frac{1}{4}\left(\frac{1}{1}+\cdots+\frac{1}{[(m-1) / 2]}\right) .
$$

The right hand side tends to infinity as $\varepsilon \rightarrow+0$. On the other hand, the left hand side equals

$$
f(1 / 2)+\sum_{x_{i}<1 / 2} d_{i}
$$

hence $\sum_{i} d_{i}$ also tends to infinity.

