IMC 2017, Blagoevgrad, Bulgaria

Day 2, August 3, 2017

Problem 6. Let $f: [0; +\infty) \to \mathbb{R}$ be a continuous function such that $\lim_{x \to +\infty} f(x) = L$ exists (it may be finite or infinite). Prove that

$$\lim_{n \to \infty} \int_{0}^{1} f(nx) \, \mathrm{d}x = L.$$

(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution 1. Case 1: L is finite. Take an arbitrary $\varepsilon > 0$. We construct a number $K \ge 0$ such that $\left| \int_{0}^{1} f(nx) \, dx - L \right| < \varepsilon$.

Since $\lim_{x \to +\infty} f(x) = L$, there exists a $K_1 \ge 0$ such that $|f(x) - L| < \frac{\varepsilon}{2}$ for every $x \ge K_1$. Hence, for $n \ge K_1$ we have

$$\left| \int_{0}^{1} f(nx) \, \mathrm{d}x - L \right| = \left| \frac{1}{n} \int_{0}^{n} f(x) \, \mathrm{d}x - L \right| = \frac{1}{n} \left| \int_{0}^{n} (f - L) \right| \le \\ \le \frac{1}{n} \int_{0}^{n} |f - L| = \frac{1}{n} \left(\int_{0}^{K_{1}} |f - L| + \int_{K_{1}}^{n} |f - L| \right) < \frac{1}{n} \left(\int_{0}^{K_{1}} |f - L| + \int_{K_{1}}^{n} \frac{\varepsilon}{2} \right) = \\ = \frac{1}{n} \int_{0}^{K_{1}} |f - L| + \frac{n - K_{1}}{n} \cdot \frac{\varepsilon}{2} < \frac{1}{n} \int_{0}^{K_{1}} |f - L| + \frac{\varepsilon}{2}.$$

If $n \ge K_2 = \frac{2}{\varepsilon} \int_0^{K_1} |f - L|$ then the first term is at most $\frac{\varepsilon}{2}$. Then for $x \ge K := \max(K_1, K_2)$ we have

$$\left| \int_0^1 f(nx) \, \mathrm{d}x - L \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Case 2: $L = +\infty$. Take an arbitrary real M; we need a $K \ge 0$ such that $\int_{0}^{1} f(nx) dx > M$ for every $x \ge K$.

Since $\lim_{x\to+\infty} f(x) = \infty$, there exists a $K_1 \ge 0$ such that f(x) > M + 1 for every $x \ge K_1$. Hence, for $n \ge 2K_1$ we have

$$\int_0^1 f(nx) \, \mathrm{d}x = \frac{1}{n} \int_0^n f(x) \, \mathrm{d}x = \frac{1}{n} \int_0^n f(x) \, \mathrm{d}x = \frac{1}{n} \int_0^n f(x) \, \mathrm{d}x = \frac{1}{n} \left(\int_0^{K_1} f(x) \,$$

If $n \ge K_2 := \left| \int_0^{K_1} f - K_1(M+1) \right|$ then the first term is at least -1. For $x \ge K := \max(K_1, K_2)$ we have $\int_0^1 f(nx) \, \mathrm{d}x > M$.

Case 3: $L = -\infty$. We can repeat the steps in Case 2 for the function -f.

Solution 2. Let $F(x) = \int_0^x f$. For t > 0 we have

$$\int_0^1 f(tx) \, \mathrm{d}x = \frac{F(t)}{t}.$$

Since $\lim_{t\to\infty} t = \infty$ in the denominator and $\lim_{t\to\infty} F'(t) = \lim_{t\to\infty} f(t) = L$, L'Hospital's rule proves $\lim_{t\to\infty} \frac{F(t)}{t} = \lim_{t\to\infty} \frac{F'(t)}{1} = \lim_{t\to\infty} \frac{f(t)}{1} = L$. Then it follows that $\lim \frac{F(n)}{n} = L$.

Problem 7. Let p(x) be a nonconstant polynomial with real coefficients. For every positive integer n, let

$$q_n(x) = (x+1)^n p(x) + x^n p(x+1).$$

Prove that there are only finitely many numbers n such that all roots of $q_n(x)$ are real.

(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution.

Lemma. If $f(x) = a_m x^m + \ldots + a_1 x + a_0$ is a polynomial with $a_m \neq 0$, and all roots of f are real, then

$$a_{m-1}^2 - 2a_m a_{m-2} \ge 0.$$

Proof. Let the roots of f be w_1, \ldots, w_n . By the Viéte-formulas,

$$\sum_{i=1}^{m} w_i = -\frac{a_{m-1}}{a_m}, \qquad \sum_{i
$$0 \le \sum_{i=1}^{m} w_i^2 = \left(\sum_{i=1}^{m} w_i\right)^2 - 2\sum_{i$$$$

In view of the Lemma we focus on the asymptotic behavior of the three terms in $q_n(x)$ with the highest degrees. Let $p(x) = ax^k + bx^{k-1} + cx^{k-2} + \ldots$ and $q_n(x) = A_n x^{n+k} + B_n x^{n+k-1} + C_n x^{n+k-2} + \ldots$; then

$$\begin{split} q_n(x) &= (x+1)^n p(x) + x^n p(x+1) = \\ &= \left(x^n + nx^{n-1} + \frac{n(n-1)}{2} x^{n-2} + \dots \right) (ax^k + bx^{k-1} + cx^{k-2} + \dots) \\ &+ x^n \left(a \left(x^k + kx^{k-1} + \frac{k(k-1)}{2} x^{k-2} + \dots \right) \right) \\ &+ b \left(x^{k-1} + (k-1)x^{k-2} + \dots \right) + c \left(x^{k-2} \dots \right) + \dots \right) \\ &= 2a \cdot x^{n+k} + \left((n+k)a + 2b \right) x^{n+k-1} \\ &+ \left(\frac{n(n-1) + k(k-1)}{2} a + (n+k-1)b + 2c \right) x^{n+k-2} + \dots, \end{split}$$

 \mathbf{SO}

$$A_n = 2a$$
, $B_n = (n+k)a + 2b = C_n = \frac{n(n-1) + k(k-1)}{2}a + (n+k-1)b + 2c$

If $n \to \infty$ then

$$B_n^2 - 2A_nC_n = \left(na + O(1)\right)^2 - 2 \cdot 2a\left(\frac{n^2a}{2} + O(n)\right) = -an^2 + O(n) \to -\infty,$$

so $B_n^2 - 2A_nC_n$ is eventually negative, indicating that q_n cannot have only real roots.

Problem 8. Define the sequence A_1, A_2, \ldots of matrices by the following recurrence:

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_{n+1} = \begin{pmatrix} A_n & I_{2^n} \\ I_{2^n} & A_n \end{pmatrix} \quad (n = 1, 2, \ldots)$$

where I_m is the $m \times m$ identity matrix.

Prove that A_n has n + 1 distinct integer eigenvalues $\lambda_0 < \lambda_1 < \ldots < \lambda_n$ with multiplicities $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$, respectively.

(Proposed by Snježana Majstorović, University of J. J. Strossmayer in Osijek, Croatia)

Solution. For each $n \in \mathbb{N}$, matrix A_n is symmetric $2^n \times 2^n$ matrix with elements from the set $\{0, 1\}$, so that all elements on the main diagonal are equal to zero. We can write

$$A_n = I_{2^{n-1}} \otimes A_1 + A_{n-1} \otimes I_2, \tag{1}$$

where \otimes is binary operation over the space of matrices, defined for arbitrary $B \in \mathbb{R}^{n \times p}$ and $C \in \mathbb{R}^{m \times s}$ as

$$B \otimes C := \begin{bmatrix} b_{11}C & b_{12}C & \dots & b_{1p}C \\ b_{21}C & b_{22}C & \dots & b_{2p}C \\ \vdots & & & \\ b_{n1}C & b_{12}C & \dots & b_{np}C \end{bmatrix}_{nm \times p}$$

Lemma 1. If $B \in \mathbb{R}^{n \times n}$ has eigenvalues λ_i , i = 1, ..., n and $C \in \mathbb{R}^{m \times m}$ has eigenvalues μ_j , j = 1, ..., m, then $B \otimes C$ has eigenvalues $\lambda_i \mu_j$, i = 1, ..., n, j = 1, ..., m. If B and C are diagonalizable, then $A \otimes B$ has eigenvectors $y_i \otimes z_j$, with (λ_i, y_i) and (μ_j, z_j) being eigenpairs of B and C, respectively.

Proof 1. Let (λ, y) be an eigenpair of B and (μ, z) an eigenpar of C. Then

$$(B \otimes C)(y \otimes z) = By \otimes Cz = \lambda y \otimes \mu z = \lambda \mu(y \otimes z).$$

If we take (λ, y) to be an eigenpair of A_1 and (μ, z) to be an eigenpair of A_{n-1} , then from (1) and Lemma 1 we get

$$A_n(z \otimes y) = (I_{2^{n-1}} \otimes A_1 + A_{n-1} \otimes I_2)(z \otimes y)$$

= $(I_{2^{n-1}} \otimes A_1)(z \otimes y) + (A_{n-1} \otimes I_2)(z \otimes y)$
= $(\lambda + \mu)(z \otimes y).$

So the entire spectrum of A_n can be obtained from eigenvalues of A_{n-1} and A_1 : just sum up each eigenvalue of A_{n-1} with each eigenvalue of A_1 . Since the spectrum of A_1 is $\sigma(A_1) = \{-1, 1\}$, we get

$$\begin{aligned} \sigma(A_2) &= \{-1+(-1), -1+1, 1+(-1), 1+1\} = \{-2, 0^{(2)}, 2\} \\ \sigma(A_3) &= \{-1+(-2), -1+0, -1+0, -1+2, 1+(-2), 1+0, 1+0, 1+2\} = \{-3, (-1)^{(3)}, 1^{(3)}, 3\} \\ \sigma(A_4) &= \{-1+(-3), -1+(-1^{(3)}), -1+1^{(3)}, -1+3, 1+(-3), 1+(-1^{(3)}), 1+1^{(3)}, 1+3\} \\ &= \{-4, (-2)^{(4)}, 0^{(3)}, 2^{(4)}, 4\}. \end{aligned}$$

Inductively, A_n has n + 1 distinct integer eigenvalues $-n, -n + 2, -n + 4, \ldots, n - 4, n - 2, n$ with multiplicities $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n}$, respectively.

Problem 9. Define the sequence $f_1, f_2, \ldots : [0, 1) \to \mathbb{R}$ of continuously differentiable functions by the following recurrence:

$$f_1 = 1;$$
 $f'_{n+1} = f_n f_{n+1}$ on $(0,1)$, and $f_{n+1}(0) = 1.$

Show that $\lim_{n\to\infty} f_n(x)$ exists for every $x \in [0,1)$ and determine the limit function.

(Proposed by Tomáš Bárta, Charles University, Prague)

Solution. First of all, the sequence f_n is well defined and it holds that

$$f_{n+1}(x) = e^{\int_0^x f_n(t) dt}.$$
 (2)

The mapping $\Phi: C([0,1)) \to C([0,1))$ given by

$$\Phi(g)(x) = e^{\int_0^x g(t) \mathrm{d}t}$$

is monotone, i.e. if f < g on (0, 1) then

$$\Phi(f)(x) = e^{\int_0^x f(t) dt} < e^{\int_0^x g(t) dt} = \Phi(g)(x)$$

on (0,1). Since $f_2(x) = e^{\int_0^x 1mathrm dt} = e^x > 1 = f_1(x)$ on (0,1), we have by induction $f_{n+1}(x) > f_n(x)$ for all $x \in (0,1)$, $n \in \mathbb{N}$. Moreover, function $f(x) = \frac{1}{1-x}$ is the unique solution to $f' = f^2$, f(0) = 1, i.e. it is the unique fixed point of Φ in $\{\varphi \in C([0,1)) : \varphi(0) = 1\}$. Since $f_1 < f$ on (0,1), by induction we have $f_{n+1} = \Phi(f_n) < \Phi(f) = f$ for all $n \in \mathbb{N}$. Hence, for every $x \in (0,1)$ the sequence $f_n(x)$ is increasing and bounded, so a finite limit exists.

Let us denote the limit g(x). We show that $g(x) = f(x) = \frac{1}{1-x}$. Obviously, $g(0) = \lim f_n(0) = 1$. By $f_1 \equiv 1$ and (2), we have $f_n > 0$ on [0, 1) for each $n \in \mathbb{N}$, and therefore (by (2) again) the function f_{n+1} is increasing. Since f_n , f_{n+1} are positive and increasing also f'_{n+1} is increasing (due to $f'_{n+1} = f_n f_{n+1}$), hence f_{n+1} is convex. A pointwise limit of a sequence of convex functions is convex, since we pass to a limit $n \to \infty$ in

$$f_n(\lambda x + (1 - \lambda)y) \le \lambda f_n(x) + (1 - \lambda)f_n(y)$$

and obtain

$$g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y)$$

for any fixed $x, y \in [0,1)$ and $\lambda \in (0,1)$. Hence, g is convex, and therefore continuous on (0,1). Moreover, g is continuous in 0, since $1 \equiv f_1 \leq g \leq f$ and $\lim_{x\to 0+} f(x) = 1$. By Dini's Theorem, convergence $f_n \to g$ is uniform on $[0, 1-\varepsilon]$ for each $\varepsilon \in (0,1)$ (a monotone sequence converging to a continuous function on a compact interval). We show that Φ is continuous and therefore f_n have to converge to a fixed point of Φ .

In fact, let us work on the space $C([0, 1 - \varepsilon])$ with any fixed $\varepsilon \in (0, 1)$, $\|\cdot\|$ being the supremum norm on $[0, 1 - \varepsilon]$. Then for a fixed function h and $\|\varphi - h\| < \delta$ we have

$$\sup_{x \in [0, 1-\varepsilon]} |\Phi(h)(x) - \Phi(\varphi)(x)| = \sup_{x \in [0, 1-\varepsilon]} e^{\int_0^x h(t) dt} \left| 1 - e^{\int_0^x \varphi(t) - h(t) dt} \right| \le C(e^{\delta} - 1) < 2C\delta$$

for $\delta > 0$ small enough. Hence, Φ is continuous on $C([0, 1-\varepsilon])$. Let us assume for contradiction that $\Phi(g) \neq g$. Hence, there exists $\eta > 0$ and $x_0 \in [0, 1-\varepsilon]$ such that $|\Phi(g)(x_0) - g(x_0)| > \eta$. There exists $\delta > 0$ such that $||\Phi(\varphi) - \Phi(g)|| < \frac{1}{3}\eta$ whenever $||\varphi - g|| < \delta$. Take n_0 so large that $||f_n - g|| < \min\{\delta, \frac{1}{3}\eta\}$ for all $n \ge n_0$. Hence, $||f_{n+1} - \Phi(g)|| = ||\Phi(f_n) - \Phi(g)|| < \frac{1}{3}\eta$. On the other hand, we have $|f_{n+1}(x_0) - \Phi(g)(x_0)| > |\Phi(g)(x_0) - g(x_0)| - |g(x_0) - f_{n+1}(x_0)| > \eta - \frac{1}{3}\eta = \frac{2}{3}\eta$, contradiction. So, $\Phi(g) = g$.

Since f is the only fixed point of Φ in $\{\varphi \in C([0, 1 - \varepsilon]) : \varphi(0) = 1\}$, we have g = f on $[0, 1 - \varepsilon]$. Since $\varepsilon \in (0, 1)$ was arbitrary, we have $\lim_{n \to \infty} f_n(x) = \frac{1}{1-x}$ for all $x \in [0, 1)$.

Problem 10. Let K be an equilateral triangle in the plane. Prove that for every p > 0 there exists an $\varepsilon > 0$ with the following property: If n is a positive integer, and T_1, \ldots, T_n are non-overlapping triangles inside K such that each of them is homothetic to K with a negative ratio, and

$$\sum_{\ell=1}^{n} \operatorname{area}(T_{\ell}) > \operatorname{area}(K) - \varepsilon,$$
$$\sum_{\ell=1}^{n} \operatorname{perimeter}(T_{\ell}) > p.$$

then

(Proposed by Fedor Malyshev, Steklov Math. Inst. and Ilya Bogdanov, MIPT, Moscow)

Solution. For an arbitrary $\varepsilon > 0$ we will establish a lower bound for the sum of perimeters that would tend to $+\infty$ as $\varepsilon \to +0$; this solves the problem.

Rotate and scale the picture so that one of the sides of K is the segment from (0,0) to (0,1), and stretch the picture horizontally in such a way that the projection of K to the x axis is [0,1]. Evidently, we may work with the lengths of the projections to the x or y axis instead of the perimeters and consider their sum, that is why we may make any affine transformation.

Let $f_i(a)$ be the length of intersection of the straight line $\{x = a\}$ with T_i and put $f(a) = \sum_i f_i(a)$. Then f is piece-wise increasing with possible downward gaps, $f(a) \leq 1 - a$, and

$$\int_0^1 f(x) \, \mathrm{d}x \ge \frac{1}{2} - \varepsilon.$$

Let d_1, \ldots, d_N be the values of the gaps of f. Every gap is a sum of side-lengths of some of T_i and every T_i contributes to one of d_i , we therefore estimate the sum of the gaps of f.

In the points of differentiability of f we have $f'(a) \ge f(a)/a$; this follows from $f'_i(a) \ge f_i(a)/a$ after summation. Indeed, if f_i is zero this inequality holds trivially, and if not then $f'_i = 1$ and the inequality reads $f_i(a) \le a$, which is clear from the definition.

Choose an integer $m = \lfloor 1/(8\varepsilon) \rfloor$ (considering ε sufficiently small). Then for all $k = 0, 1, \ldots, \lfloor (m-1)/2 \rfloor$ in the section of K by the strip $k/m \leq x \leq (k+1)/m$ the area, covered by the small triangles T_i is no smaller than $1/(2m) - \varepsilon \geq 1/(4m)$. Thus

$$\int_{k/m}^{(k+1)/m} f'(x) \, \mathrm{d}x \ge \int_{k/m}^{(k+1)/m} \frac{f(x) \, \mathrm{d}x}{x} \ge \frac{m}{k+1} \int_{k/m}^{(k+1)/m} f(x) \, \mathrm{d}x \ge \frac{m}{k+1} \cdot \frac{1}{4m} = \frac{1}{4(k+1)}.$$

Hence,

$$\int_0^{1/2} f'(x) \, \mathrm{d}x \ge \frac{1}{4} \left(\frac{1}{1} + \dots + \frac{1}{[(m-1)/2]} \right)$$

The right hand side tends to infinity as $\varepsilon \to +0$. On the other hand, the left hand side equals

$$f(1/2) + \sum_{x_i < 1/2} d_i;$$

hence $\sum_i d_i$ also tends to infinity.