ESTABELECIMENTO DE REDES GEODÉSICAS LOCAIS DE ALTA PRECISÃO PARA O MONITORAMENTO DE MOVIMENTOS DA CROSTA – ESTUDO DE CASO DE UMA BARRAGEM DE USINA HIDRELÉTRICA

Niel Nascimento Teixeira¹ Luiz Danilo Damasceno Ferreira¹

¹Universidade Federal do Paraná – Departamento de Geomática – Programa de Pós-Graduação em Ciências Geodésicas – Laboratório de Geodésia Espacial – <u>nielnt@ufpr.br; luizdanilo@ufpr.br</u>

RESUMO

O monitoramento de movimentos da crosta utilizando, especificamente, técnicas geodésicas constitui uma importante ferramenta para o controle e a segurança de estruturas – naturais ou artificiais. O Sistema de Posicionamento Global tem sido utilizado no estabelecimento de redes geodésicas de alta precisão ativas e passivas para aplicações em geodinâmica. Sendo assim, podem ser identificados na literatura aplicações do GPS no monitoramento de movimentos da crosta a nível global, continental, regional e local. Deste modo, apresenta-se neste trabalho os fatores envolvidos no estabelecimento de uma rede geodésica de alta precisão para o monitoramento de movimentos da crosta utilizando o GPS. Também serão apresentados os resultados e conclusões obtidos.

Palavras-chaves: Redes Geodésicas; Movimentos da Crosta; Sistema de Posicionamento Global

ESTABLISHMENT OF LOCAL GEODETIC NETWORKS OF HIGH PRECISION FOR THE MONITORING OF MOVEMENTS OF THE CRUST - STUDY OF CASE OF A HIDROELETRIC POWER DAM

ABSTRACT

The monitoring of movements of the crust using, specifically, geodetic techniques constitutes an important tool for the control and the security of structures – natural or artificial. Global Positioning System has been used in the establishment of active and passive geodetics networks of high precision for applications in geodynamics. Applications of the GPS in the monitoring of movements of the crust can be found in the literature in nivel global, continental, regional and local. Then, one presents in this paper the involved factors in the establishment of a geodetic network of high precision for the monitoring of movements of the GPS. Results and conclusions will be presented.

Keywords: Geodetic Networks; movements of the crust; Global Positioning System

1. INTRODUÇÃO

Com a possibilidade de operar independentemente de condições meteorológicas, fornecendo posicionamento tridimensional, aliados a sua alta precisão – 1 a 0,1ppm, ou melhor do que isto, para o posicionamento relativo estático – e aos custos relativamente baixos envolvidos na aquisição de seus receptores, a tecnologia GPS tem sido utilizada em uma variada gama de atividades que necessitam de posicionamento, dentre elas encontra-se a Geodinâmica, especificamente, no que diz respeito ao monitoramento de movimentos da crosta, onde esta tecnologia tem sido aplicada a nível global, continental, regional e local.

No âmbito global, têm-se como maior exemplo, a rede do International GPS Service (IGS), composta por mais de 300 estações distribuídas em todo o planeta, rastreando continuamente os satélites GPS. A partir desta rede, as deformações da crosta terrestre são monitoradas globalmente, são providos os parâmetros de rotação da Terra, e as velocidades de suas estações são utilizadas para calcular "mapas de tensão" (stress) global e para determinar as componentes do vetor de rotação ($\Omega_x, \Omega_y, \Omega_z$) das

placas tectônicas (HOFMANN-WELLENHOF, 2001, p.320-324; SEEBER, 2003, p. 363-365).

Em aplicações continentais, cita-se o Sistema de Referência Geocêntrico para as Américas (SIRGAS), criado em 1995, na qual foram rastreadas 58 estações. Uma nova campanha de

levantamentos GPS ocorreu em 2000, rastreando-se 184 estações. Estimou-se os vetores velocidade de todas as estações rastreadas em ambas as épocas. Das 184 estações pertencentes ao SIRGAS atualmente, 20 estações coletam dados de forma contínua. Estes dados são incluídos no conjunto de dados do IGS Regional Network Associate Analysis Center – South America (RNAAC – SIR), o qual fornece informações contínuas a respeito de movimentos da placa Sul-americana (SEEBER, 2003, p. 364).

Predição de terremotos é um dos objetivos da aplicação do GPS no monitoramento de movimentos da crosta a nível regional. Muitos projetos concebidos com este objetivo encontram-se em fase de operação em varias regiões tectonicamente ativas do planeta. Dentre estes projetos cita-se: o GPS Earth Observation NETwork (GEONET); o South American Geodynamic Activities (SAGA); o Southern California Integrated GPS Network (SCIGN) e o Geodynamics of South and South-East-Asia (GEODYSSEA). Detalhes a respeito destes projetos podem ser vistos em SEEBER (2003), HOFMANN-WELLENHOF (2001) e MONICO (2000).

1.1 APLICAÇÕES EM ÂMBITO LOCAL

No que diz respeito a aplicações locais, o GPS tem sido utilizado no monitoramento de estruturas (ou em sua região) feitas pelo homem, ou por ele modificadas, como por exemplo, a formação de grandes reservatórios nas barragens de UHE, áreas de extração de água, petróleo e minérios. Em muitas aplicações desta natureza, as distâncias entre as estações de referência e as estações de monitoramento são pequenas, podendo ser alcançadas precisões milimétricas e detectadas deformações de pequena magnitude (SEEBER, 2003, p. 365). Como este trabalho repousa neste tipo de aplicação, dois exemplos serão vistos na seqüência.

TEIXEIRA (2001) realizou uma pesquisa com o objetivo de avaliar a viabilidade do GPS na detecção de deslocamento vertical. Para consecução deste objetivo, foi projetado um dispositivo denominado de "Base para Deformações", que possibilita a simulação de deslocamentos verticais positivos e negativos. Utilizando-se 11 estações da rede GPS pertencente à COPEL, os deslocamentos verticais simulados, eram rigorosamente medidos com um paquímetro, e posteriormente comparados com os obtidos com o GPS. Foram utilizadas várias ferramentas estatísticas para a detecção de deslocamentos e de erros nas observações, como por exemplo o Teste Data Snooping, Confiabilidade e Sensibilidade. A diferença média entre os deslocamentos medidos com o paquímetro e os obtidos com o GPS foi de 1,08cm. Deste modo, com base nos resultados obtidos, e levando em conta que os dados foram processados em um programa comercial, a aplicação do GPS com vistas a detecção de deslocamentos verticais mostrou-se promissora.

A falha do monte Carmel é uma das maiores estruturas geológicas do norte de Israel. Esta falha é caracterizada por atividades sísmicas intensas e contínuas, o que faz com que esta região seja considerada como potencialmente perigosa. Deste modo, EVEN-TZUR (2003) implantou uma rede geodésica consistindo de 17 estações, distribuídas em uma área de \approx 30 x 40km, na região do monte Carmel, com o objetivo de monitorar seus movimentos verticais. Foram realizadas várias campanhas de levantamentos GPS, nesta rede, entre os anos de 1990 e 1999. Com o intuito de validar os resultados obtidos por meio do GPS, foram conduzidas duas campanhas de nivelamento geométrico na referida rede. No entanto, não houve diferenças significativas entre os resultados obtidos pelo GPS e os obtidos pelo nivelamento geométrico. Os resultados finais demonstraram que o monte Carmel eleva-se a uma taxa de 5mm/ano.

Muitos outros exemplos de aplicações GPS no monitoramento de movimentos em estruturas, a nível local, podem ser encontrados na literatura, como por exemplo:

- Monitoramento de pontes (CHAVES, 2001);
- Monitoramento de deslizamento de terra (DEPENTHAL e SCHMITT, 2003);
- Monitoramento de minas a céu aberto (FORWARD et al., 2003);
- Monitoramento de barragens (KONTNY et al., 2003);
- Monitoramento de edifícios (CHAVES, 2001);
- Monitoramento de deformação dinâmica de estruturas, com o propósito de determinar vibrações estruturais (NICKITOPOULOU et al., 2003);
- Fornecimento de informações tridimensionais para o controle de movimento de corpo rígido e vibrações elásticas de uma estrutura (TEAGUE et al., 1995); e
- Análise da estabilidade de redes locais (FERREIRA e GARNÉS, 2000).

Deste modo, este trabalho tem como objetivo apresentar os fatores envolvidos no estabelecimento de uma rede geodésica local – dando ênfase ao estudo de caso da rede geodésica implantada na região da Usina Hidrelétrica (UHE) de Salto Caxias – com vistas ao monitoramento de movimentos da crosta, onde serão analisados os fatores intrínsecos à obtenção de alta precisão nas coordenadas da referida rede.

2 MONITORAMENTO GEODÉSICO DE MOVIMENTOS DA CROSTA EM BARRAGENS DE USINAS HIDRELÉTRICAS

A formação de grandes reservatórios nas barragens de Usinas Hidrelétricas (UHE) pode induzir a deformações na Crosta Terrestre, bem como, ocasionar sismos em regiões anteriormente assísmicas. Este fenômeno é conhecido como Sismicidade Induzida por Reservatórios – SIR (GUPTA e RASTOGI, 1976). A formação de um novo reservatório artificial altera as condições estáticas das formações rochosas do ponto de vista mecânico (em virtude do próprio peso da massa da água), e do ponto de vista hidráulico (em conseqüência da infiltração do fluido na subsuperfície, que causa pressões internas nas camadas rochosas profundas). A combinação destas duas ações pode gerar sismos, caso as condições locais sejam propícias. Há décadas atrás acreditava-se que os reservatórios artificiais só podiam gerar sismos de pequena magnitude. No entanto, a literatura tem mostrado inúmeros exemplos de terremotos, alguns catastróficos, associados com a formação de grandes reservatórios em barragens de UHE.

Deste modo, o monitoramento geodésico de movimentos da crosta constitue uma importante etapa dos programas de predição de terremotos. Todavia, o principal questionamento destes programas, com respeito ao SIR, é se os terremotos que ocorrem nas proximidades dos grandes reservatórios são causados pelo aumento da pressão dos fluídos e/ou do peso da massa d'água. Sendo assim, os levantamentos geodésicos realizados antes e após o enchimento de reservatórios artificiais, podem ajudar a responder esta questão, o que já tem sido feito em várias partes do mundo. No Brasil, iniciativas como esta têm sido executadas, por meio de convênio entre a Universidade Federal do Paraná (UFPR), através do Laboratório de Aferição e Instrumentação Geodésica (LAIG) e o Laboratório de Geodésia Espacial (LAGE), e a Companhia Paranaense de Energia (COPEL), a qual construiu uma série de UHE ao longo do Rio Iguaçu. Assim, este convênio permitiu a realização de monitoramento geodésico de movimentos da crosta na região de algumas destas usinas, onde foram utilizados dados de Nivelamento, Gravimetria e do Global Positioning System (GPS). Atualmente, estes dois laboratórios tem concentrado inumeráveis esforços para monitorar a região da UHE de Salto Caxias, também situada no Rio Iguaçu, no município de Capitão Leônidas Marques, a 600 km de Curitiba.

A figura 2.1 mostra o mapa do estado do Paraná com a localização da cidade de Capitão Leônidas Marques e a UHE de Salto Caxias.

Figura 2.1 - Localização da Cidade de Capitão Leônidas Marques e da UHE de Salto Caxias no Mapa do Paraná

A UHE de Salto Caxias é a maior Barragem de Concreto Compactado a Rolo (CCR) da América do Sul, a 8a Barragem em volume d'água no mundo com 3,6 x 10⁹m³, e possui 67m de altura e 1083m de comprimento, sendo a terceira maior usina da COPEL, menor apenas que as de Foz do Areia e Salto Segredo, abrangendo um superfície de 131 km². Tais características permitem o desencadeamento de um processo sismogênico na região da Barragem. A Figura 2.2 mostra a vista panorâmica da Barragem de Salto Caxias.

Figura 2.2 – Vista Panorâmica da Barragem de Salto Caxias

3 REDE GEODÉSICA LOCAL DE SALTO CAXIAS

Inicialmente, foram projetados, pela COPEL 97 RRNN, sendo que destas, quatro seriam selecionadas para servirem aos propósitos de Pontos de Apoio (PA), e outras dez para Pontos de Controle (PC). No entanto, deste contigente, implantou-se apenas 87 RRNN, selecionando-se destas, três PA e dez PC, os quais formam a rede geodésica local de Salto Caxias, perfazendo, assim, um total de 13 estações. A Figura 3.1 mostra a configuração geométrica da rede geodésica local de Salto Caxias

Figura 3.1 – Configuração Geométrica da Rede Geodésica Local de Salto Caxias

Esta rede está distribuída em um quadrilátero de aproximadamente 35x35km, todos as estações foram monumentadas de forma a facilitar sua identificação e atender as exigências de estabilidade, acesso, dimensões específicas, etc.

Para implantação destas estações seguiu-se as mesmas especificações técnicas daquelas utilizadas no projeto de auscultação geodésica da região da Barragem de Bento Munhoz da Rocha (GEMAEL e DOUBECK, 1982): As estações foram concretadas no local apresentando forma tronco-piramidal, de seção quadrada, possuindo base superior de 30x30cm, e inferior de 45x45cm. A base inferior situa-se em geral, cerca de 1m abaixo da superfície; já a superior aflora cerca de 20cm. A figura 3.2 mostra duas estações desta rede.

Figura 3.2 – Estações da Rede Local de Salto Caxias

As especificações técnicas seguidas na fase de monumentação se devem ao fato de que as mudanças detectadas (em coordenadas, no caso deste trabalho) dos pontos monitorados, devem ser devidas a deslocamentos sofridos pela estação, sujeita à subsidência, soerguimentos em processos semelhantes, e não devido à monumentação deficiente ou imprópria.

3.1 LEVANTAMENTO DE CAMPO E CORREÇÃO DOS FATORES GEODINÂMICOS INTRÍNSECOS

Foram realizados duas campanhas GPS: a primeira campanha ocorreu no período de 5 a 10 de agosto de 1998 – antes do enchimento do reservatório, e a segunda no período de 16 a 20 de dezembro de 2002. Para a realização das duas campanhas, foram utilizados quatro receptores ASHTECH Z-XII, e um receptor TRIMBLE SSI.

As estações PA01, PA02 e PA03 foram posicionadas em função das estações PARA e UEPP, pertencentes à Rede Brasileira de Monitoramento Contínuo (RBMC). Estas duas estações pertencem também à Rede do Sistema de Referência Geocêntrico para as Américas (SIRGAS). As coordenadas do SIRGAS estão referidas ao ITRF94, época 1995,4. Estas coordenadas podem ser vistas na tabela 3.1

abela 5.1 – Coordenadas Geodesicas e Carlesianas Geocentricas das Estações FARA e OEFF, Epoca 1995,4					
EST.	LATITUDE	LONGITUDE	ALT. GEOMÉTRICA (M)		
PARA	-25º26'54,1291"	-49º13'51,4368"	925,7590		
UEPP	-22º07'11,6594"	-51º24'30,7216"	430,9450		
	X (m)	Y (m)	Z (m)		
PARA	3.763.751,6390	-4.365.113,7680	-2.724.404,7550		
UEPP	3.687.624,3100	-4.620.818,5710	-2.386.880,4070		

Tabela 3.1 – Coordenadas Geodésicas e Cartesianas Geocêntricas das Estações PARA e UEPP, Época 1995,4

No entanto, devido a variação temporal das coordenadas dos pontos localizados sobre a crosta terrestre em decorrência de aspectos geodinâmicos, é necessário que estas coordenadas sejam reduzidas à época das observações GPS, ou seja, para a época 1998,70 no caso da primeira campanha, e 2002,96 no caso da segunda campanha; após o processamento/ajustamento das observações, as coordenadas devem retornar à época SIRGAS (COSTA, 1999; DREWES e SÁNCHEZ, 2003). Esta redução pode ser feita utilizando modelos geofísicos de movimentos de placas. O modelo Geofísico indicado pelo International Earth Rotation Service (IERS) é o NNR-NUVEL-1 ou ainda a sua recente atualização NNR-NUVEL-1A (COSTA, 1999, p. 112).

As componentes das velocidades no sistema cartesiano das estações PARA e UEPP, segundo o modelo geofísico NNR-NUVEL-1A podem ser vistas na tabela 3.2.

Tabela 3.2 - Componentes das Velocidades no Sistema Cartesiano, Segundo o Modelo Geofísico NNR-NUVEL-1A

VELOCIDADES - NNR-NUVEL-1A						
Estação V_x (m/ano) V_y (m/ano) V_z (m/ano)						
PARA 0,0003 -0,0061 0,0102						
UEPP -0,0004 -0,0057 0,0104						
Fonte: COSTA (1999, p. 138).						

A equação que permite a redução das coordenadas SIRGAS para a época na qual foi realizada a primeira campanha é dada por (COSTA, 1999, p. 154; MONICO, 2000, p. 97):

$$X_{i}(t) = X_{i}(t_{0}) + V.(t - t_{0}),$$
 (1)

onde :

 $\mathbf{X}_{i}(t)$: é o vetor de coordenadas, a serem reduzidas, das estações PARA e UEPP nas épocas t = 1998,70 e t = 2002,96;

 $\mathbf{X}_{i}(t_{0})$: é o vetor de coordenadas destas mesmas estações na época $t_{0} = 1995,40$; e

V : é o vetor de suas velocidades.

Deste modo, utilizando-se as coordenadas cartesianas geocêntricas das estações PARA e UEPP, pertencentes ao SIRGAS época 1995,4 (tabela 3.1), juntamente com suas respectivas velocidades (tabela 3.2) na equação (6.1), reduziu-as às épocas 1998,70 e 2002,96, respectivamente. Estas coordenadas podem ser vistas na tabela 3.3.

Tabela 3.3 – Coordenadas Geodésicas e	Cartesianas Geocêntricas das	s Estações PARA e UEPP, I	Épocas 1998,70 e 2002,96

21 0 0/ 1000,10						
EST.	LATITUDE	LONGITUDE	ALT. GEOMÉTRICA (M)			
PARA	-25°26'54,1279"	-49º13'51,4373"	925,7590			
UEPP	-22º07'11,6582"	-51º24'30,7221"	430,9452			
	X (m)	Y (m)	Z (m)			
PARA	3.763.751,6400	-4.365.113,7881	-2.724.404,7213			
UEPP	3.687.624,3087	-4.620.818,5898	-2.386.880,3727			
	ÉPOCA 2002,96					
EST.	LATITUDE	LONGITUDE	ALT. GEOMÉTRICA (M)			
PARA	-25°26'54,1279"	-49º13'51,4373"	925,7590			
UEPP	-22º07'11,6582"	-51º24'30,7221"	430,9452			
	X (m)	Y (m)	Z (m)			
PARA	3.763.751,6413	-4.365.113,8141	-2.724.404,6779			
UEPP	3.687.624,3070	-4.620.818,6141	-2.386.880,3284			

Estas coordenadas foram utilizadas no processamento e ajustamento dos PA em ambas campanhas realizadas. Após o processamento/ajustamento, as coordenadas dos PA obtidas em ambas as épocas foram reduzidas para a época SIRGAS 1995,40.

Os três PA foram rastreiados utilizando o método de posicionamento relativo estático, com uma duração média de rastreio de 6 horas. Empregou-se uma taxa de coleta de dados de 15 segundos em virtude da compatibilidade com o intervalo adotado pelo IBGE para as Estações PARA e UEPP, valor este que é atualmente empregado em todas as estações da RBMC. Adotou-se ângulo de elevação de 10 graus para minimizar as degradações advindas da troposfera e do efeito multicaminho.

A tabela 3.4 mostra o comprimento das linhas de base formadas entre as estações da RBMC e os PA.

Tabela 3.4 – Comprimento das Linhas de Base					
LINHA DE BASE	COMPRIMENTO (km)				
PARA-PA01	436,30				
PARA-PA02	432,20				
PARA-PA03	414,10				
UEPP-PA01	425,40				
UEPP-PA02	459,00				
UEPP-PA03	435,70				

Os dez PC foram rastreiados utilizando o método de posicionamento relativo estático, com uma duração média de rastreio de 3 horas, taxa de coleta de dados de 15 segundos e ângulo de elevação mínimo de 10 graus. Foram posicionados em função das estações PA01, PA02 e PA03. Na tabela 3.5 esta indicado os comprimentos das linhas de base formadas entre os PA e os PC para a primeira e segunda campanha.

LINHA DE	COMPRIMENTO	LINHA DE BASE	COMPRIMENTO			
BASE	(km)		(km)			
PA01-PC207	11,3	PA02- PC611	24,4			
PA01-PC403	18,7	PA02- PC506	28,0			
PA01-PC712	30,9	PA03- PC207	23,1			
PA01-PC611	23,3	PA03- PC403	18,0			
PA01-PC506	15,3	PA03- PC712	8,6			
PA01-PC109	7,2	PA03- PC109	29,6			
PA01-PC318	16,4	PA03- PC318	21,9			
PA01-PC807	24,2	PA03- PC807	9,2			
PA01-PC310	10,6	PA03- PC310	23,8			
PA01-PC615	26,7	PA03- PC615	6,5			

Tabela 3.5 – Comprimento das Linhas de Base Formadas Entre os PA e os PC

3.2 PROCESSAMENTO E AJUSTAMENTO DA REDE GEODÉSICA LOCAL

Atualmente há diversos programas de processamento de dados GPS, científicos e comerciais, disponíveis no Laboratório de Geodésia Espacial (LAGE) da UFPR. Dentre estes, optou-se pela utilização de um programa científico – BERNESE, Versão 4.2 – pois este permite um tratamento mais refinado quanto ao processamento de linhas de base, bem como, contempla a possibilidade de se traçar estratégias, seja na utilização de modelos troposféricos ou na aplicação de modelagens para resolução de ambigüidades.

As principais estratégias e opções adotadas – para obtenção de coordenadas de alta precisão – nos processamentos dos dados GPS neste trabalho foram:

- Orbitas precisas do IGS;
- Correções devido ao carregamento oceânico;
- Ambigüidades: para linhas de base menores que 10km utilizou-se a estratégia denominada no BERNESE de SEARCH, o qual refere-se ao algoritm*o Fast Ambiguity Resolution Approach* (FARA).
 Para linhas de base maiores que 10km utilizou-se a estratégia Quasi-Ionosphere-Free (QIF), conhecida também como L₃;
- Orientação terrestre: foram adotadas soluções compatíveis com as órbitas IGS, segundo os arquivos ERP (*Earth Rotation Parameters*);
- lonosfera: para linhas de base menores que 10km estimou-se a *priori* um modelo da ionosfera por meio do programa (IONEST), enquanto para linhas de base maiores, a ionosfera não foi modelada porque seus efeitos são eliminadas mediante a combinação linear (L₃);
- Troposfera: o atraso dos sinais produzidos pelo efeito da troposfera, foram modelados a priori mediante ao modelo Saastamoinen, com os parâmetros meteorológicos fornecidos pelo Sistema Meteorológico do Paraná (SIMEPAR). Esta estimativa a priori do atraso dos sinais foi somada as correções dos atrasos zenitais utilizando a função de mapeamento de Niell. Deste modo, calculou-se um parâmetro troposférico a cada 1 hora;
- Correção do centro de fase da antena do receptor: os deslocamentos de centro de fase da antena são valores recomendados pelo IGS, dependendo da combinação antena/receptor utilizada na observação.

Após processamento das linhas de base, procedeu-se ao ajustamento da rede geodésica local de salto caxias. No ajustamento de observações GPS pelo M.M.Q., uma consideração de extrema importância é a correlação matemática entre observações, que pode ser tratada de três maneiras (TEIXEIRA, 2001):

- 1) Ignorá-las;
- 2) Considerar o efeito individualmente para cada linha de base (correlação entre satélites); e
- 3) Considerar o efeito conjunto para cada linha de base.

A primeira e a segunda alternativa não requerem linhas de base observadas simultaneamente e, portanto, aplicam-se a processamento por linha de base individual, sendo amplamente utilizadas nos módulos de ajustamento em programas comercias de processamento de dados GPS. A terceira alternativa representa um tratamento mais rigoroso, visto que se aplica a linhas de bases observadas simultaneamente. O BERNESE 4.2, bem como, a maioria dos programas científicos de processamento de dados GPS, utilizam este tratamento para o ajustamento das observações.

Para o ajustamento dos PA foram injuncionadas as estações PARA e UEPP – pertencentes ao SIRGAS, enquanto que para o ajustamento dos PC, foram injuncionados os PA. Nas tabelas 3.6 e 3.7, observam-se as coordenadas cartesianas geocêntricas ajustadas dos PA e PC – referenciadas ao SIRGAS época 1995,4 – com seus respectivos desvios padrão, referentes a 1^ª e 2^ª campanha, respectivamente.

TABELA 3.6 – COORDENADAS CARTESIANAS GEOCÊNTRICAS AJUSTADAS COM SEUS RESPECTIVOS DESVIOS PADRÃO

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
PA013.423.787,83960,0013-4.638.426,19780,0016-2.720.122,68100,0010PA023.417.101,43810,0007-4.620.998,91140,0009-2.757.742,80420,0006PA033.435.437,43400,0015-4.616.785,60840,0018-2.742.149,21800,0012PC1093.420.644,10340,0027-4.636.988,25960,0033-2.726.429,37750,0021PC2073.423.897,32690,0012-4.632.493,09690,0016-2.729.755,91870,0011PC3103.430.646,49930,0023-4.631.160,08510,0022-2.723.822,87210,0016PC3183.435.835,06310,0053-4.627.718.12580,0067-2.723.175,30970,0044PC5063.425.636,81850,0018-4.629.678,11640,0023-2.732.523,20400,0014PC6113.430.854,52780,0034-4.621.042,58170,0039-2.738.195,58780,0027PC6153.432.874,95880,0021-4.622.128,74520,0027-2.734.783,72810,0018	EST.	X (m)	σ _x (m)	Y (m)	σ _Y (m)	Z (m)	σ _z (m)
PA023.417.101,43810,0007-4.620.998,91140,0009-2.757.742,80420,0006PA033.435.437,43400,0015-4.616.785,60840,0018-2.742.149,21800,0012PC1093.420.644,10340,0027-4.636.988,25960,0033-2.726.429,37750,0021PC2073.423.897,32690,0012-4.632.493,09690,0016-2.729.755,91870,0011PC3103.430.646,49930,0023-4.631.160,08510,0022-2.723.822,87210,0016PC3183.435.835,06310,0053-4.627.718.12580,0067-2.723.175,30970,0044PC5063.425.636,81850,0018-4.629.678,11640,0023-2.732.523,20400,0014PC6113.430.854,52780,0034-4.621.042,58170,0039-2.738.195,58780,0027PC6153.432.874,95880,0021-4.622.128,74520,0027-2.734.783,72810,0018	PA01	3.423.787,8396	0,0013	-4.638.426,1978	0,0016	-2.720.122,6810	0,0010
PA033.435.437,43400,0015-4.616.785,60840,0018-2.742.149,21800,0012PC1093.420.644,10340,0027-4.636.988,25960,0033-2.726.429,37750,0021PC2073.423.897,32690,0012-4.632.493,09690,0016-2.729.755,91870,0011PC3103.430.646,49930,0023-4.631.160,08510,0022-2.723.822,87210,0016PC3183.435.835,06310,0053-4.627.718.12580,0067-2.723.175,30970,0044PC5063.425.636,81850,0018-4.629.678,11640,0023-2.732.523,20400,0014PC6113.430.854,52780,0013-4.623.364,51590,0018-2.736.448,38190,0012PC6153.432.874,95880,0034-4.621.042,58170,0039-2.738.195,58780,0027PC8073.433.989,80500,0021-4.622.128,74520,0027-2.734.783,72810,0018	PA02	3.417.101,4381	0,0007	-4.620.998,9114	0,0009	-2.757.742,8042	0,0006
PC1093.420.644,10340,0027-4.636.988,25960,0033-2.726.429,37750,0021PC2073.423.897,32690,0012-4.632.493,09690,0016-2.729.755,91870,0011PC3103.430.646,49930,0023-4.631.160,08510,0022-2.723.822,87210,0016PC3183.435.835,06310,0053-4.627.718.12580,0067-2.723.175,30970,0044PC5063.425.636,81850,0018-4.629.678,11640,0023-2.732.523,20400,0014PC6113.430.854,52780,0013-4.623.364,51590,0018-2.736.448,38190,0012PC6153.432.874,95880,0034-4.621.042,58170,0039-2.738.195,58780,0027PC8073.433.989,80500,0021-4.622.128,74520,0027-2.734.783,72810,0018	PA03	3.435.437,4340	0,0015	-4.616.785,6084	0,0018	-2.742.149,2180	0,0012
PC2073.423.897,32690,0012-4.632.493,09690,0016-2.729.755,91870,0011PC3103.430.646,49930,0023-4.631.160,08510,0022-2.723.822,87210,0016PC3183.435.835,06310,0053-4.627.718.12580,0067-2.723.175,30970,0044PC5063.425.636,81850,0018-4.629.678,11640,0023-2.732.523,20400,0014PC6113.430.854,52780,0013-4.623.364,51590,0018-2.736.448,38190,0012PC6153.432.874,95880,0034-4.621.042,58170,0039-2.738.195,58780,0027PC8073.433.989,80500,0021-4.622.128,74520,0027-2.734.783,72810,0018	PC109	3.420.644,1034	0,0027	-4.636.988,2596	0,0033	-2.726.429,3775	0,0021
PC3103.430.646,49930,0023-4.631.160,08510,0022-2.723.822,87210,0016PC3183.435.835,06310,0053-4.627.718.12580,0067-2.723.175,30970,0044PC5063.425.636,81850,0018-4.629.678,11640,0023-2.732.523,20400,0014PC6113.430.854,52780,0013-4.623.364,51590,0018-2.736.448,38190,0012PC6153.432.874,95880,0034-4.621.042,58170,0039-2.738.195,58780,0027PC8073.433.989,80500,0021-4.622.128,74520,0027-2.734.783,72810,0018	PC207	3.423.897,3269	0,0012	-4.632.493,0969	0,0016	-2.729.755,9187	0,0011
PC3183.435.835,06310,0053-4.627.718.12580,0067-2.723.175,30970,0044PC5063.425.636,81850,0018-4.629.678,11640,0023-2.732.523,20400,0014PC6113.430.854,52780,0013-4.623.364,51590,0018-2.736.448,38190,0012PC6153.432.874,95880,0034-4.621.042,58170,0039-2.738.195,58780,0027PC8073.433.989,80500,0021-4.622.128,74520,0027-2.734.783,72810,0018	PC310	3.430.646,4993	0,0023	-4.631.160,0851	0,0022	-2.723.822,8721	0,0016
PC5063.425.636,81850,0018-4.629.678,11640,0023-2.732.523,20400,0014PC6113.430.854,52780,0013-4.623.364,51590,0018-2.736.448,38190,0012PC6153.432.874,95880,0034-4.621.042,58170,0039-2.738.195,58780,0027PC8073.433.989,80500,0021-4.622.128,74520,0027-2.734.783,72810,0018	PC318	3.435.835,0631	0,0053	-4.627.718.1258	0,0067	-2.723.175,3097	0,0044
PC6113.430.854,52780,0013-4.623.364,51590,0018-2.736.448,38190,0012PC6153.432.874,95880,0034-4.621.042,58170,0039-2.738.195,58780,0027PC8073.433.989,80500,0021-4.622.128,74520,0027-2.734.783,72810,0018	PC506	3.425.636,8185	0,0018	-4.629.678,1164	0,0023	-2.732.523,2040	0,0014
PC615 3.432.874,9588 0,0034 -4.621.042,5817 0,0039 -2.738.195,5878 0,0027 PC807 3.433.989,8050 0,0021 -4.622.128,7452 0,0027 -2.734.783,7281 0,0018	PC611	3.430.854,5278	0,0013	-4.623.364,5159	0,0018	-2.736.448,3819	0,0012
PC807 3.433.989,8050 0,0021 -4.622.128,7452 0,0027 -2.734.783,7281 0,0018	PC615	3.432.874,9588	0,0034	-4.621.042,5817	0,0039	-2.738.195,5878	0,0027
	PC807	3.433.989,8050	0,0021	-4.622.128,7452	0,0027	-2.734.783,7281	0,0018

TABELA 3.7 - COORDENADAS CARTESIANAS GEOCÊNTRICAS AJUSTADAS COM SEUS RESPECTIVOS DESVIOS PADRÃO

	(2° CAMPANHA)					
EST.	X (m)	σ _x (m)	Y (m)	σ _Y (m)	Z (m)	σ _z (m)
PA01	3.423.787,8270	0,0018	-4.638.426,1741	0,0024	-2.720.122,6768	0,0015
PA02	3.417.101,4276	0,0033	-4.620.998,8864	0,0043	-2.757.742,7814	0,0027
PA03	3.435.437,4296	0,0035	-4.616.785,6040	0,0043	-2.742.149,2152	0,0024
PC109	3.420.644,1257	0,0014	-4.636.988,2567	0,0019	-2.726.429,3790	0,0013
PC207	3.423.897,3338	0,0027	-4.632.493,0897	0,0085	-2.729.755,9267	0,0028
PC310	3.430.646,5726	0,0019	-4.631.160,1538	0,0041	-2.723.822,9279	0,0019
PC318	3.435.835,0633	0,0047	-4.627.718.1177	0,0037	-2.723.175,3093	0,0021
PC506	3.425.636,8304	0,0018	-4.629.678,0992	0,0023	-2.732.523,1976	0,0014
PC611	3.430.854,5189	0,0072	-4.623.364,5087	0,0097	-2.736.448,3749	0,0065
PC615	3.432.874,9315	0,0022	-4.621.042,5659	0,0026	-2.738.195,5835	0,0019
PC807	3.433.989,7951	0,0027	-4.622.128,7498	0,0064	-2.734.783,7330	0,0022

Observa-se por meio das tabelas 3.6 e 3.7 que os desvios padrão das coordenadas estão ao nível do milímetro, com exceção da estação PA02 (1^ª campanha), com desvio padrão ao nível do décimo do milímetro. Pode-se observar também, que falta as coordenadas das estações PC403 e PC712. A estação PC403 não teve suas ambigüidades solucionadas – para ambas as épocas de observações, e a estação PC712 foi submersa no enchimento do reservatório.

Visando-se a análise estatística do desempenho do ajustamento, aplicou-se o teste global bilateral. Deste modo, analisou-se a qualidade dos ajustamentos, comparando o fator de variância a priori (σ_0^2) com o fator de variância a posteriori ($\hat{\sigma}_o^2$) a um nível de confiança ($1-\alpha$) de 95%, verificando-se

assim, o desempenho de cada ajustamento, por meio do cálculo da estatística qui-quadrado (χ^{*}), empregada neste teste. Os resultados deste teste podem ser vistos na tabela 3.8.

-	Ajustamento	Qui-Quadrado $\chi *^2$	19,06< χ * ² <50,71
_	1 ^ª Campanha	46,40	Aceita
_	^{2a} Campanha	49,70	Aceita

TABELA 3.8 – RESULTADO DOS TESTES GLOBAL REFERENTES A 1ª E A 2ª CAMPANHA

Pode-se observar pela tabela 3.8 que os ajustamentos dos PA e PC referentes a primeira e a segunda campanha apresentaram desempenho satisfatório, o que provavelmente pode atribuir-se ao tempo de execução dos rastreios e as estratégias adotadas no processamento das observações.

4 CONSIDERAÇÕES FINAIS

O principal objetivo deste trabalho consistiu em descrever e analisar o estabelecimento de uma rede geodésica local, especificamente a estabelecida na região da Usina Hidrelétrica de Salto Caxias, cujo propósito é o monitoramento de movimentos da crosta. Tal objetivo foi alcançado por meio de duas campanhas de levantamentos GPS realizados sobre a RRNN implantadas na referida região.

No intuito de se obter coordenadas precisas e confiáveis alguns procedimentos foram adotados. O primeiro diz respeito à correção dos fatores geodinâmicos intrínsecos, como é o caso do movimento de placas litosféricas. Tal movimento impõe uma variação temporal das coordenadas dos pontos localizados sobre a crosta terrestre. Deste modo, para minimização deste fator reduziu-se as coordenadas das estações base – PARA e UEPP – à época das observações GPS, ou seja, para a

época 1998,70 no caso da primeira campanha, e 2002,96 no caso da segunda campanha; após o processamento e ajustamento das observações, as coordenadas foram reduzidas à época SIRGAS novamente. Esta redução foi efetuada utilizando-se o modelo geofísico NNR-NUVEL-1A.

O segundo procedimento diz respeito a utilização de um programa científico de processamento e ajustamento das observações GPS, pois, permite um tratamento mais refinado quanto ao processamento de linhas de base, bem como, contempla a possibilidade de se traçar estratégias, para a obtenção de resultados precisos e confiáveis. Deste modo, as estratégias adotadas no processamento das observações – descritas na seção 3.2 – juntamente com o tempo de execução dos rastreios, propiciaram coordenadas precisas (ver tabelas 3.6 e 3.7), que se confirma pelo desempenho satisfatório dos ajustamentos realizados (tabela 3.8). Além do teste Global, realizou-se – embora não encontra-se neste trabalho – o teste Data Snoping para detectar erros embutidos nas observações, a um nível de significância de 0,83%. Entretanto, este teste não detectou nenhum erro significativo nas observações.

Finalmente, salienta-se que os resultados alcançados são satisfatórios, pois os desvios padrão das coordenadas estão ao nível do milímetro, haja visto o bom desempenho dos testes estatísticos realizados.

REFERÊNCIAS

CHAVES, J. C. (2001): Uso da Tecnologia GPS na Monitoração de Deformações: Sistemas, Etapas e Experimentos. Tese de Doutorado. Curso de Transportes, São Carlos. São Carlos.

COSTA, S. M. A. (1999): Integração da Rede Geodésica Brasileira aos Sistemas de Referência Terrestres. Tese de Doutorado. Curso de Pós-Graduação em Ciências Geodésicas, Universidade Federal do Paraná. Curitiba, 156p.

DEPENTHAL, C.; SCHMITT, G. (2003): Monitoring of a Landslide in Vorarlberg/Austria. XI International FIG-Symposium on Deformation Measurements, Santorini, 25-28/05/2001. **Proceedings**. 7p.

DREWES, H.; SANCHEZ, L. (2003): Sistemas de Referencia Cinemáticos Modernos en Geodesia – Definición, Realización y Matenimiento. Apostila. Curso de Pós-Graduação em Ciências Geodésicas, Universidade Federal do Paraná. Curitiba, 95p.

EVEN-TZUR, G. (2003): Monitoring Vertical Movements in Mount Carmel Region. XI International FIG-Symposium on Deformation Measurements, Santorini, 25-28/05/2001. **Proceedings**. 10p.

FERREIRA, L. D. D.; GARNÉS, S. J. A. (2000): Análise da Deformação de Estruturas de Redes Geodésicas Horizontais. In: Congresso Brasileiro de Cadastro Técnico Multifinalitário, 4º COBRAC. Florianópolis, Anais (CD).

FORWARD, T.; STEWART, M. P.; TSAKIRI, M. (2003): GPS Data Stacking for Small Scale GPS Deformation Monitoring Applications. XI International FIG-Symposium on Deformation Measurements, Santorini, 25-28/05/2001. **Proceedings**. 7p.

GEMAEL, C.; DOUBECK, A. (1982): Auscultação Geodésica da Região da Barragem Bento Munhoz das Rocha. Boletim da UFPR, n.º 28.

GUPTA, H. K.; RASTOGI, B. K. (1976): Dams and Earthquakes. Elsevier Scientific Publishing Company, Amsterdam.

HOFMANN-WELLENHOF, B.; LICHTENEGGER, H.; COLLINS, J. (2001): **Global Positioning System: Theory and Pratice**. 6th ed., Springer, Wien-New York.

KONTNY, B.; STANISLAW, D.; CACON, S. (2003): Natural Tectonic Hazard for Water Dams System in the Sudetes and Fore-Sudetic Block. XI International FIG-Symposium on Deformation Measurements, Santorini, 25-28/05/2001. **Proceedings**. 8p.

MONICO, J. F. G. (2000): Posicionamento pelo NAVSTAR-GPS – descrição, fundamentos e aplicações. São Paulo: UNESP.

NICKITOPOULOU, A.; PROTOPSALTI, K.; KONTOGIANNI, V.; TRIANTAFILLIDIS, P.; STIROS, S. (2003): Experimental Assessment of the accuracy of RTK – GPS for Monitoring Movements / Oscillations of Flexible Engineering Structures. XI International FIG-Symposium on Deformation Measurements, Santorini, 25-28/05/2001. **Proceedings**. 6p.

SEEBER, G. (2003): Satellite Geodesy: Foundations, Methods, and Applications. W. de Gruyter, Berlin-New York.

TEAGUE, E. H.; HOW, J. P.; LAWSON, L. G.; PARKINSON, B. W. (1995): GPS as a Structural Deformation Sensor. In: AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS, INC., Baltimore MD. Proceedings of the AIAA Guidance, Navigation and Control Conference: AIAA, p. 1-9.

TEIXEIRA, N. N. (2001): **Detecção e Análise de Deslocamento Vertical Utilizando o Sistema NAVSTAR-GPS**. Dissertação de Mestrado, curso de Pós-Graduação em Ciências Geodésicas, Universidade Federal do Paraná, Curitiba, PR, 112 p.