DETERMINAÇÃO DA CONFIABILIDADE DE PLANÍMETROS DIGITAIS: EXPERIMENTOS PRÁTICOS DE TOPOGRAFIA PARA CÁLCULOS DE ÁREA E DE VOLUME

WEYLLER DIOGO DE ALBUQUERQUE MELO¹

ANDRÉA DE SEIXAS¹

Universidade Federal de Pernambuco - UFPE Centro de Tecnologia e Geociências - CTG ¹Departamento de Engenharia Cartográfica, Recife, PE wdiogo19@gmail.com, aseixas@ufpe.br

RESUMO – Este trabalho abordará uma metodologia empregada para a avaliação de áreas e de volumes com o emprego de planímetros digitais. Partindo-se de três figuras (triângulo, quadrado e uma figura curva de formato irregular) criadas no AutoCAD e impressas em papel de formato A4 na escala de 1/50000 foram determinadas suas respectivas áreas. Para simular um relevo de elevação composto por dois cumes e uma área de garganta foram criadas várias curvas de nível de formato irregulares com a ajuda do comando offset do AutoCAD. As mesmas são concêntricas e inscritas uma às outras, com espaçamentos escolhidos aleatoriamente. Desta forma, o experimento foi também adaptado para o cálculo e avaliação de volumes. O trabalho apresenta como resultados um apoio didático com um exemplo explicativo para o manuseio do planímetro digital, um gabarito com os valores reais das áreas e dos volumes das figuras, obtidos do AutoCAD, servindo de comparação entre os resultados dos planímetros durante o experimento e o valor real. A concepção de um roteiro para o manuseio do planímetro auxiliará no desenvolvimento de atividades práticas em sala de aula para os alunos, além de contribuir didaticamente, na compreensão operacional do planímetro digital.

ABSTRACT - This paper discusses a methodology to evaluate areas and volumes with the use of digital planimeters. Starting from three figures (triangle, square and an irregularly shaped curve figure) created in AutoCAD and printed on A4 paper scale 1 /50000, have been determined their respective areas. To simulate a high relief consisting of two mountaintop and a mountain pass areas have been created several contours of irregular shape with the help of AutoCAD offset command. They are concentric and inscribed one another, at intervals randomly chosen. This way one could also adapted the experiment for the calculation and evaluation of volumes. The paper present results as a didactic support with an example explanation for the handling of the digital planimeter, a template with the actual values of the areas and volume figures, whose values were taken from AutoCAD to be comparable among the results of the planimeters during the experiment and the actual value. The design of a schedule for handling the planimeter operacionalities will contribute for the development of the practical activities for the students during the classrooms, besides improving didactically in understanding and the use of digital planimeter.

1 INTRODUÇÃO

O planímetro é um aparelho empregado em diversas áreas de conhecimento, tais como: Arquitetura, Geologia, Minas, Química, Biologia, Medicina, Física, Planejamento Urbano, Cartografía, Cadastro, Topografía, Construção de um modo geral, dentre outras. Na Topografia este instrumento serve para a medição de áreas contidas em uma Carta ou Planta Topográfica, o que permite a determinação e a avaliação de superfícies e o cálculo de volume. O Planímetro digital (DIGIPLAN – Haff) possibilitou pela primeira vez, em um único aparelho, a determinação eletrônica de áreas, volumes e perímetros.

Este trabalho terá a finalidade de utilizar o planímetro digital linear volante e o planímetro digital polar para a determinação de área e volume de figuras planas. Com a ajuda do AutoCAD foram definidas três figuras (triângulo, quadrado e uma figura curva de formato irregular) com a mesma área, aleatoremente escolhida. Desta forma é possível determinar as áreas dessas figuras com o emprego de planímetros, comparando os resultados encontrados, para a

W. D. de A. Melo, A. de Seixas

verificação da precisão e exatidão dos aparelhos. Neste trabalho foram utilizadas diferentes escalas (1/50000, 1/1000 e 1/1) adaptadas eletronicamente nos aparelhos, para poder confrontar os resultados com os valores reais. Estes representados pelos valores de área extraídos no AutoCAD.

Neste contexto será verificado se os planímetros digitais, escolhidos para os experimentos, estão dentro dos critérios de precisão e exatidão indicados no manual do parelho. Através da medição de superfícies conhecidas será possível verificar os valores obtidos pelos equipamentos, comparando-os com os valores reais extraídos do AutoCAD. Os planímetros digitais vêm sendo utilizados, nas aulas práticas das disciplinas de Topografia, desde sua aquisição, em 2004. Será apresentado um procedimento de medição com o emprego do planímetro digital, de forma a facilitar o seu manuseio em sala de aula, permitindo ao estudante entender melhor o seu manuseio e a sua finalidade, ressaltando-se a importância da verificação do mesmo, antes de utilizá-lo para uma determinada medição.

2 EMBASAMENTO TEÓRICO

2.1 Planímetro

O planímetro mecânico foi desenvolvido em 1854 por Jacob Amsler. Este instrumento permite a determinação mecânica da área de uma figura plana qualquer, variando sua precisão entre 1: 200 e 1: 1000. A área da figura é calculada a partir do número de voltas da roda integrante ou roda contadora (DOMINGUES e ARANHA, 1979). O princípio de funcionamento do planímetro se baseia no Teorema de Green (RABELO e MANSO, 2004).

O planímetro (integrador) é empregado para avaliação de quaisquer superfícies. Sua utilização também é aconselhada para a verificação expedida de cálculos de área, realizados por quaisquer outros processos. Para Espartel (1980) as medidas de área devem ter uma tolerância variável entorno de 1/1000.

Existem duas espécies de planímetro: o planímetro polar e o planímetro linear volante. O primeiro possui um pólo fixo, ao redor do qual gira o instrumento; o segundo o pólo é deslocado para o infinito, o que equivale a dizer que todo o aparelho segue uma direção retilínea. Sob o ponto de vista especial que interessa à Topografia, o planímetro polar satisfaz a todas as necessidades, sendo que o linear só é de vantagem na determinação das áreas de diagramas ou de figuras de demasiado comprimento em relação à largura (ESPARTEL, 1980).

Para utilizar eficientemente um planímetro, deve-se observar, em primeiro lugar, que as medidas sejam efetuadas numa superficie plana e, em seguida, que os órgãos constituintes do aparelho estejam dispostos de forma a fornecer valores, os mais exatos possíveis. Assim, deve-se observar a seguinte regra: colocada a ponta do traçador aproximadamente no centro da figura, cuja área se quer conhecer, os dois braços articulados, o polar e o traçador, deverão fazer entre si, aproximadamente, um ângulo reto. Tem-se a certeza, desta forma, de que o traçador contornará a figura facilmente (ESPARTEL, 1980).

Com o advento de novas tecnologias mecânicas e eletrônicas, algumas partes do instrumento foram se modificando. Isso permitiu o acréscimo da automação dos planímetros, onde a transformação das medidas analógicas para digital é realizada através de um descodificador analógico/digital. Na sub-seção a seguir será tratado sobre o planímetro digital.

2.2 Planímetro digital

Atualmente existem os planímetros digitais, que possuem o mesmo princípio de funcionamento, que o planímetro analógico. A Figura 1 apresenta os dois tipos de planímetros digitais da marca Haff. Na Figura 1 (a) é apresentado o planímetro digital polar (nº. 330) e na Figura 1 (b) é apresentado o planímetro digital linear volante (nº 331).

W. D. de A. Melo, A. de Seixas

IV Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação

Na Figura 2 apresentam-se com maiores detalhes as funções do planímetro digital. Os braços traçadores, dos dois tipos de planímetro, possuem o mesmo comprimento e o mesmo tambor de integração com as mesmas funções para a determinação da área, volume e perímetro.

Figura 2 – O tambor de integração, teclas e funções. (a) Vista real do aparelho e (b) Localização das informações no display. Fonte: <u>http://www.haff.com/anleitung300.pdf</u>.

O planímetro digital é constituído basicamente de um pólo em torno do qual haverá o movimento do braço articulado, um braço polar, um braço traçador, cuja extremidade possui uma lupa com uma marca de medição que irá percorrer o perímetro da área a ser determinada. No prolongamento do braço traçador encontra-se uma roda, conhecida como roda integrante ou roda contadora, que possui rigidamente um tambor graduado em sua periferia e cujo eixo está em comunicação com um contador de voltas. Dá-se a este tambor graduado o nome de integrante, o qual servirá para avaliar a área percorrida de acordo com o número de voltas dada.

A Figura 3 mostra o esquema dos tipos de planímetro, polar e linear volante, utilizados nesses experimentos. Vêse o pólo (4), o braço traçador (2), o braço polar (5a) ou (5b). No planímetro polar é possível mudar o tamanho do seu braço. O braço polar (5a), encaixado na cavidade polar exterior, representa o braço polar longo e o braço polar (5b), encaixado na cavidade interna, representa o braço polar curto. Também são destacados o braço linear volante (9), o tambor integrante (1) e a ponta traçadora (3). Esta última é constituída por uma lupa com uma marca de medição. O dispositivo para tomada de carregamento e saída dos dados, a área teste para a verificação do instrumento e realização de sua calibração e a roda contadora, localizada abaixo do tambor integrante, estão representadas na Figura 3, respectivamente, por (6), (8) e (7). A área teste é formada por elipses com áreas previamente conhecidas. É constituída de uma folha de acetado que tem um coeficiente de dilatação muito pequeno.

Figura 3 - Componentes do planímetro digital. Fonte: http://www.haff.com/anleitung300.pdf.

Quanto à precisão o DIGIPLAN é um aparelho de medição muito sensível e deve ser utilizado com bastante cuidado. O disco de medição deve ser deslocado com muita delicadeza. Para a medição de áreas existem duas precisões de medição fornecidas para uma área de 100 cm²: a primeira com braço traçador longo, possui uma Resolução igual a 0,1 cm² para uma escala 1:1e uma Precisão \pm 0,2%; segunda com braço traçador curto, possui uma Resolução 0,05 cm² para uma escala 1:1 e uma Precisão \pm 0,1% (DIGIPLAN, 2000).

A resolução é a menor parte que pode ser identificada quando está se fazendo a leitura de uma medida. A precisão é o grau de requinte, ou confiabilidade, de um procedimento para determinação de uma grandeza qualquer. A precisão está ligada à confiabilidade do processo de medição, e não da medida. A precisão de uma série de observações geralmente é representada pelo desvio padrão em relação ao valor médio. A exatidão é o grau de requinte, ou

confiabilidade, do valor determinado para uma grandeza por meio de um procedimento qualquer. Está ligada à confiabilidade da medida obtida, e não do processo de medição utilizado. A exatidão de uma medida é obtida comparando-a com o valor verdadeiro, independente da precisão do processo de medição. A exatidão de uma série de observações geralmente é representada pelo desvio padrão em relação ao valor real (ERBA et al., 2005). Para mais informações recomenda-se confrontar a referência (GEMAEL, 1994).

O DIGIPLAN possui opções de medidas de comprimento, área e volume. O mesmo oferece opções de unidades de medidas, a depender da escala que está sendo usada. A medida de volume só fornece resultados em m³. Oferece também 17 (dezessete) opções de escala para medidas de áreas e volume, algumas estão limitadas a duas unidades de medida. Por exemplo, escalas pequenas oferecem unidade de medidas grandes, o inverso ocorre para escalas grandes. O planímetro DIGIPLAN pode também determinar áreas com diferentes escalas nos eixos X e Y, para isso é preciso que se entre com essas informações. Para análise estatística na determinação de áreas o DIGIPLAN possui a opção AV/POINT, que determina a média de até 19 (dezenove) medidas de área de uma determinada figura.

2.3 AutoCAD

Segundo Mansur (2011) o AutoCAD é um software gráfico auxiliado por computador escrito na linguagem de programação C. O AutoCAD é ótima ferramenta utilizada pelo Engenheiro Cartógrafo para gerar banco de dados sobre uma determinada área. Os softwares CAD têm como objetivo o desenvolvimento de desenhos e projetos aplicados as mais diversas áreas da engenharia, arquitetura, design, desenho industrial e computacional, (ERBA et al., 2005).

Neste trabalho a ferramenta CAD foi utilizada para gerar as figuras planas e determinar suas áreas, a partir de um comando de determinação da área da superfície. Para atingir os objetivos deste trabalho, essas áreas foram consideradas como reais.

As figuras geradas no AutoCAD foram três, um triângulo, um quadrado e uma figura curva de formato irregular (Figura 4 (a)). Estas figuras foram realizadas de forma a possuírem a mesma área. Assim é possível testar nas aulas práticas diversos métodos de medição de área, por exemplo, método de Gauss, método geométrico, método das quadrículas e o método mecânico. Para simular um relevo de elevação composto por dois cumes e uma área de garganta foram criadas várias curvas de nível de formato irregulares. As mesmas são concêntricas e inscritas uma às outras, com espaçamentos escolhidos aleatoriamente. Desta forma, o experimento foi também adaptado para o cálculo e avaliação de volumes. Nesta figura curva de formato irregular (Figura 4 (b)) foram definidas curvas de nível com ajuda da ferramenta OFFSET. A distância vertical, eqüidistância, entre essas curvas é de 10 m.

Figura 4 – Figuras criadas no AutoCAD. (a) Triângulo, quadrado e figura curva de formato irregular. (b) Figura curva de formato irregular para o cálculo de volume.

2.4 Determinação de áreas e de volumes com emprego do planímetro

A teoria do cálculo de área com o emprego de um planímetro não será descrita nesse trabalho, para maior aprofundamento sugere-se a leitura das seguintes referências: (ESPARTEL, 1980), (DOMINGUES e ARANHA, 1937), (JORDAN, 1944) e (KAHMEN, 1997).

O cálculo de volume pelo método das curvas de nível é realizado a partir da equação 1 descrita abaixo. Por meio das áreas planas entre duas curvas de nível consecutivas A1 e A2 e da equidistância Δ H entre as mesmas é possível

determinar o volume compreendido entre as curvas de nível. Para maiores esclarecimentos ver (KAHMEN, 1997) e (JORDAN, 1944)

$$Volume = ((A1 + A2)^* \Delta H)/2$$
(1)

2.5 Outros procedimentos digitais para o cálculo de área e de volume

Atualmente existem métodos computacionais que podem determinar a área de superfícies irregulares com bastante precisão, porém como o nome do método já diz, faz-se necessária a utilização de computadores, o que nem sempre está à disposição.

Com o advento da Computação Automática e, conseqüentemente, da Cartografia digitalizada, a determinação de superfícies poderá ser feito digitalmente, respeitando ainda a grande preferência dos engenheiros por uma apresentação visual dos dados cartográficos. O desenvolvimento na área da tecnologia do computador digital tem estimulado a introdução de novos conceitos de aquisição das informações cartográficas. As características principais desses conceitos é a redução do tempo na obtenção da informação, o seu processamento e a sua disponibilidade (DE SEIXAS, 1978). A Figura 5 apresenta as diferentes disponibilidades da informação de entrada.

Figura 5 - Diferentes disponibilidades da informação de entrada (INPUT). Fonte: DE SEIXAS (1978).

Hoje em dia é possível para a informação de entrada, além das possibilidades apresentadas na Figura 5, "escannear" uma Carta Topográfica, quando esta não está disponível digitalmente, obter uma imagem "raster" e depois "vetorizar" a mesma e daí extrair a área da região desejada, sem falar das imagens de satélites, onde as mesmas já estão disponíveis digitalmente.

3 METODOLOGIA

3.1 Materiais

Nos experimentos foram utilizados uma Folha de papel A4, uma Folha de papel A3 e dois planímetros digitais de rolos (n° 015456 e n° 015448) e dois planímetros digitais polares (n° 015279 e n° 015447). Os experimentos foram realizados no LATOP (Laboratório de Topografia) do Departamento de Engenharia Cartográfica da UFPE. Na folha de papel A4 foram impressas as figuras utilizadas para o cálculo de áreas e o cálculo de volume (Figura 4). A folha de A4 foi fixada à folha de A3, obtendo assim, uma superfície aproximadamente lisa para o uso do planímetro.

3.2 Métodos

Antes de começar a medição é necessário verificar se a bateria está em boas condições, para isso a informação "BAT" não deve aparecer no display. A mesa de trabalho deve estar na horizontal e a superfície, sob a qual o disco de medição será deslizado deve estar livre de grandes rugosidades e sem interrupções. O braço polar (5a) assim como o carrinho de rolamento (9) e o braço traçador (2) devem formar aproximadamente um ângulo de 90° quando a lupa de medição (3) estiver aproximadamente no meio da área a ser medida (Figura 3). O ponto de partida deve ser marcado e o círculo contido na lupa de medição (3) deve ser colocado exatamente sobre o ponto de partida. Em seguida, percorre-se a linha de delimitação da área até que o ponto de partida seja alcançado novamente. O valor de medição é sempre positivo independente se percorrer o trecho de área no sentido horário ou anti-horário. A medição só poderá ser realizada se o planímetro foi anteriormente calibrado. Se no display aparecer à informação CAL ou CAL j significa que o mesmo deve ser calibrado antes de ser utilizado.

3.2.1 Medição de áreas com o planímetro digital

Nesse experimento cada figura foi medida três vezes, em seguida foram calculadas as médias e o desvio padrão. Comparando-se o valor médio com o valor real fornecido pelo AutoCAD (Tabela 1). Decidiu-se utilizar a escala 1/50000, por essa ser utilizada nas Cartas Topográficas, utilizadas com freqüência nas atividades práticas de leituras de coordenadas UTM e de coordenadas geográficas nas aulas de Topografia. Instalou-se também a escala de 1/1000 no planímetro para poder comparar o resultado da transformação de escala das medições realizadas em 1/50000 com as medições realizadas na escala 1/1000. E depois a área teste utilizada para se realizar a calibração (Figura 3) e verificação do planímetro foi percorrida na escala 1/1 com os quatro instrumentos utilizados.

Na Tabela 1 os valores de área estão apresentados na segunda coluna em mm². Para a determinação da área real na escala de 1/50000 basta multiplicar esses valores pelo fator de escala 50000 ao quadrado e depois dividir por um fator de 1000000 para transformar a unidade para m². A sigla C.N. descrita na Tabela 1 refere-se à curva de nível de uma respectiva altitude em metros.

AREA MEDIDOS PELO AUTOCAD - 1:50.000 VOLUME - 1:50.000 C. N. AREA FATOR ² AREA AUTOCAD (m ²) 60 3725,9180 50000 9314795,000 INFERIOR MORRO A MORRO B 60 3725,9180 50000 9314795,000 70 3232,6773 50000 8081693,250 6982441,250 31850653,750 31850653,750 80 2764,5630 50000 6911407,500 63576728,750 9796847,500 63576728,750 9796847,500 90 2321,5753 50000 4759286,000 - 3703680,000 52816121,250 6591691,250 100 1903,7144 50000 1610844,750 - 717789,750 1076684,625 TOTAL (m ³) 120 A 457,0016 50000 1142504,000 278340795,000 66427406,000 66786300,875 411554501,875 130 A 326,7462 50000 501472,750 130 644,3379 50000 1610844,750 120 B 457,0016 50000 1142504,000 1142540,000 1142540,000<											
C.N. AREA FATOR ² AREA AUTOCAD (m ²) INFERIOR MORRO A MORRO B 60 3725,9180 50000 9314795,000 86982441,250 31850653,750 31850653,750 70 3232,6773 50000 6911407,500 63376728,750 13766743,750 80 2764,5630 50000 6911407,500 63376728,750 9796847,500 90 2321,5753 50000 4759286,000 - 3703680,000 3703680,000 100 1903,7144 50000 1610844,750 - 717789,750 1076684,625 TOTAL (m³) 120 A 457,0016 50000 1142504,000 278340795,000 66786300,875 411554501,875 130 A 326,7462 50000 S01472,750 1 644,3379 50000 1610844,750 120 A 457,0016 50000 1610844,750 278340795,000 66786300,875 411554501,875 130 A 326,7462 50000 816865,500 11018 6442,7406,000 6786300,875 411554501,875 <th>AF</th> <th>REA MEDIDO</th> <th>OS PELO A</th> <th>UTOCAD - 1:50.000</th> <th>VO</th> <th></th>	AF	REA MEDIDO	OS PELO A	UTOCAD - 1:50.000	VO						
60 3725,9180 50000 9314795,000 86982441,250 31850653,750 31850653,750 70 3232,6773 50000 8081693,250 74965503,750 13766743,750 13766743,750 80 2764,5630 50000 6911407,500 52816121,250 6591691,250 591691,250 100 1903,7144 50000 4759286,000 - 3703680,000 3703680,000 110 A 644,3379 50000 1610844,750 - 717789,750 1076684,625 TOTAL (m³) 120 A 457,0016 50000 816865,500 - 717789,750 1076684,625 TOTAL (m³) 130 A 326,7462 50000 501472,750 - 11554501,875 130 A 95,7033 50000 239263,250 - 644,3379 50000 1412504,000 130 B 326,7462 50000 816865,500 - - - - - - - - - - - - - - -	C. N.	AREA	FATOR ²	AREA AUTOCAD (m ²)	INFERIOR	MORRO A	MORRO B				
70 3232,6773 50000 8081693,250 74965503,750 13766743,750 13766743,750 80 2764,5630 50000 6911407,500 63576728,750 9796847,500 9796847,500 90 2321,5753 50000 4759286,000 - 3703680,000 3703680,000 110 A 644,3379 50000 1610844,750 - 717789,750 1076684,625 TOTAL (m³) 120 A 457,0016 50000 816865,500 - 717789,750 1076684,625 TOTAL (m³) 130 A 326,7462 50000 816865,500 - 11554501,875 130 A 95,7053 50000 1610844,750 - 11554501,875 130 B 457,0016 50000 1142504,000 - 86865,500 130 B 326,7462 50000 1142504,000 - 13766743,750 130 B 326,7462 50000 816865,500 - - - 140 B 200,5891 50000 816865,500 - -	60	3725,9180	50000	9314795,000	86982441,250	31850653,750	31850653,750				
80 2764,5630 50000 6911407,500 63576728,750 9796847,500 9796847,500 90 2321,5753 50000 5803938,250 52816121,250 6591691,250 6591691,250 100 1903,7144 50000 4759286,000 - 3703680,000 3703680,000 110 A 644,3379 50000 1610844,750 - 717789,750 1076684,625 TOTAL (m³) 120 A 457,0016 50000 816865,500 - 717789,750 66427406,000 66786300,875 411554501,875 130 A 326,7462 50000 816865,500 - 71789,750 66427406,000 66786300,875 411554501,875 130 A 95,7053 50000 239263,250 -	70	3232,6773	50000	8081693,250	74965503,750	13766743,750	13766743,750				
90 2321,5753 50000 5803938,250 52816121,250 6591691,250 6591691,250 100 1903,7144 50000 4759286,000 - 3703680,000 3703680,000 110 A 644,3379 50000 1610844,750 - 717789,750 1076684,625 TOTAL (m³) 120 A 457,0016 50000 816865,500 - 717789,750 66427406,000 66786300,875 411554501,875 130 A 326,7462 50000 501472,750 - 717789,750 1076684,625 TOTAL (m³) 150 A 95,7053 50000 239263,250 -	80	2764,5630	50000	6911407,500	63576728,750	9796847,500	9796847,500				
100 1903,7144 50000 4759286,000 - 3703680,000 3703680,000 110 A 644,3379 50000 1610844,750 - 717789,750 1076684,625 TOTAL (m³) 120 A 457,0016 50000 1142504,000 - 717789,750 1076684,625 TOTAL (m³) 130 A 326,7462 50000 816865,500 - 717789,750 66427406,000 66786300,875 411554501,875 130 A 326,7462 50000 501472,750 - - 71789,700 66427406,000 66786300,875 411554501,875 150 A 95,7053 50000 239263,250 -	90	2321,5753	50000	5803938,250	52816121,250	6591691,250	6591691,250				
110 A 644,3379 50000 1610844,750 - 717789,750 1076684,625 TOTAL (m³) 120 A 457,0016 50000 1142504,000 278340795,000 66427406,000 66786300,875 411554501,875 130 A 326,7462 50000 \$01472,750 1076684,625 TOTAL (m³) 140 A 200,5891 50000 239265,250 110 644,3379 50000 1610844,750 120 B 457,0016 50000 1142504,000 1142504,000 1142504,000 130 B 326,7462 50000 \$114257,750 1076684,625 TOTAL (m³) 140 B 200,5891 50000 \$11427,750 1076684,625 1076684,625	100	1903,7144	50000	4759286,000	-	3703680,000	3703680,000				
120 A 457,0016 50000 1142504,000 278340795,000 66427406,000 66786300,875 411554501,875 130 A 326,7462 50000 816865,500 64427406,000 66786300,875 411554501,875 140 A 200,5891 50000 501472,750 66427406,000 66786300,875 411554501,875 150 A 95,7053 50000 239263,250 644,3379 50000 1610844,750 120 B 457,0016 50000 816865,500 1142504,000 1142504,000 130 B 326,7462 500000 811865,500 1140 R 200,5891 50000 811427,750	110 A	644,3379	50000	1610844,750	-	717789,750	1076684,625	TOTAL (m ³)			
130 A 326,7462 50000 816865,500 140 A 200,5891 50000 501472,750 150 A 95,7053 50000 239263,250 110 B 644,3379 50000 1610844,750 120 B 457,0016 50000 1142304,000 130 B 326,7462 50000 816865,500 140 R 200,5891 50000 501472,750	120 A	457,0016	50000	1142504,000	278340795,000	66427406,000	66786300,875	411554501,875			
140 A 200,5891 50000 501472,750 150 A 95,7053 50000 239263,250 110 B 644,3379 50000 1610844,750 120 B 457,0016 50000 1142504,000 130 B 326,7462 50000 816865,500 140 B 200,5891 50000 501472,750	130 A	326,7462	50000	816865,500							
150 A 95,7053 50000 239263,250 110 B 644,3379 50000 1610844,750 120 B 457,0016 50000 1142504,000 130 B 326,7462 50000 816865,500 140 B 200,5891 50000 501472,750	140 A	200,5891	50000	501472,750							
110 B 644,3379 50000 1610844,750 120 B 457,0016 50000 1142504,000 130 B 326,7462 50000 816865,500 140 B 200,5891 50000 501472,750	150 A	95,7053	50000	239263,250							
120 B 457,0016 50000 1142504,000 130 B 326,7462 50000 \$16865,500 140 B 200,5891 50000 \$01472,750	110 B	644,3379	50000	1610844,750							
130 B 326,7462 50000 816865,500 140 B 200 5891 50000 501472.750	120 B	457,0016	50000	1142504,000							
140 B 200 5891 50000 501472 750	130 B	326,7462	50000	816865,500							
	140 B	200,5891	50000	501472,750							
150 B 95,7053 50000 239263,250	150 B	95,7053	50000	239263,250							

Tabela 1 – Áreas e volumes reais da figura curva de formato irregular.

Para as medidas de áreas e volumes é necessário seguir determinados procedimentos. Para o cálculo de área esses procedimentos são mais simplificados. Para utilizar o planímetro digital em cálculos de áreas, basta seguir os passos abaixo (DIGIPLAN, 2000):

- 1) Primeiramente, coloque o braço traçador, que contêm a lente aproximadamente perpendicular ao braço rolador ou braço polar;
- 2) Pressione o botão "ON" para ligar e programar o instrumento;
- 3) Verifique se no display está aparecendo a palavra "BAT", se estiver o instrumento precisará ser recarregado;
- Clique diversas vezes no botão "SCALE" para selecionar a escala desejada e em seguida utilize o botão "UNIT" para selecionar a unidade desejada;
- 5) Marque na curva o ponto de partida/chegada e posicione o centro da lente cuidadosamente em cima do ponto;
- 6) Pressione com cuidado "START" para começar a medir;
- 7) Traceje toda a curva com cuidado para evitar que o centro da lente não fuja muito da linha;
- 8) O valor que se encontra no display é a área;
- 9) Para fazer uma nova medida e obter uma média, clique em "ON" ou em "START".

3.2.2 Medição de volumes com o planímetro digital

O volume será calculado de duas maneiras: a primeira a partir dos valores obtidos nas medições das áreas e aplicação da fórmula (1); a segunda o volume é determinado usando os comandos automáticos do aparelho.

A figura curva de formato irregular (Figura 4 (b)) será dividida em partes. Primeiramente é calculado o volume entre as curvas de cota 60m a 100m, segundo de 100m a 150m (Morro A: elevação localizada na parte superior da figura curva), depois de 100m a 150m (Morro B: elevação localizada na parte inferior da figura curva). O volume entre a cota 150m do Morro A e o ponto cotado 156m pode ser calculado diretamente através da fórmula 1, ou deve-se mudar a eqüidistância das curvas de nível no planímetro e calcular o volume utilizando os comandos automáticos. Em seguida, finaliza-se com o cálculo do volume entre a curva de 150m Morro B e o ponto cotado 159m.

Para medir volumes, basta seguir as instruções abaixo (DIGIPLAN, 2000):

Os passos de 1 a 4 (sub-seção **3.2.1**) se repetem conforme apresentado anteriormente.

W. D. de A. Melo, A. de Seixas

- 5) Para cálculo de volumes é preciso colocar a diferença de altura entre as curvas, para isso aperte "MENUE" até a palavra "height" (altura) aparecer no display;
- 6) Pressione o botão "HOLD+" ou "HOLD-" para mudar o valor da altura para maiores ou menores valores;
- 7) Ter cuidado para não se esquecer de mudar a unidade da altura utilizando o botão "UNIT";
- Marque na curva o ponto de partida/chegada e posicione a marca fiducial da lente cuidadosamente em cima do ponto;
- 9) Pressione com cuidado "START" para começar a medir;
- 10) Traceje toda a curva com cuidado para evitar que o centro da lente não fuja muito da linha;
- Quando chegar ao ponto de partida/chegada pressione o botão "HOLD+" para o planímetro guardar o valor encontrado;
- 12) Vá para a próxima curva e centralize a lente no ponto de partida/chegada e faça uma nova medida, ao terminar pressione "HOLD+"; No display aparecerá o volume parcial entre as curvas de nível medidas;
- 13) Continue o procedimento de medição como apresentado no passo 12 e na última curva a ser tracejada utilize o botão "HOLD+" e em seguida pressione o botão "MR/MC" o valor que aparece no display é o volume total da região medida.

Após utilizar esse passo a passo foi possível encontrar os volumes de cada parte da região do relevo topográfico almejada.

4 RESULTADOS

A quantidade de leituras realizadas com os planímetros ultrapassa a dimensão exigida para este artigo. Por isso optou-se por apresentar as leituras realizadas com os planímetros instalados em uma escala. A seguir serão apresentados os valores medidos e calculados com os quatro planímetros digitais utilizados no experimento (Tabela 2, Tabela 3, Tabela 4 e Tabela 5) na escala 1/50000.

		ARE	A PLANI	METRO	015448 - 1:50.000	VOI	LUME - 1:50.	000		
	C. N.	A 1	A 2	A 3	MEDIA (m ²)	DESVIO	INFERIOR	MORRO A	MORRO B	
	60	8,740	8,657	8,685	8694000,000	0,042226	81138333,33	29223333	30385000	
	70	7,543	7,515	7,543	7,533,666,667	0,016166	69818333,33	12058333	14238333	
	80	6,430	6,458	6,402	6,430,000,000	0,028	59150000	8210000	10016667	
	90	5,400	5,372	5,428	5,400,000,000	0,028	49081666,67	5331667	6446667	
	100	4,453	4,426	4,370	4,416,333,333	0,042336	-	2871667	3383333	
[A 110	1,475	1,391	1,419	1,428,333,333	0,042771	-	500000	916500	TOTAL (m ³)
	A 120	0,974	0,974	1,002	983,333,333	0,016166	259188333,3	58195000	65386500	382769833,3
	A 130	0,640	0,668	0,668	658,666,667	0,016166				
	A 140	0,417	0,389	0,417	407,666,667	0,016166				
	A 150	0,139	0,194	0,167	166,666,667	0,027502				
	B 110	1,670	1,670	1,642	1,660,666,667	0,016166				
	B 120	1,224	1,196	1,141	1,187,000,000	0,042226				
	B 130	0,835	0,779	0,835	816,333,333	0,032332				
	B 140	0,473	0,473	0,473	473,000,000	0				
	B 150	0,167	0,222	0,222	203,666,667	0,031754				

Tabela 2: Áreas e volumes da figura curva de formato irregular – Planímetro nº. 015448.

Tabela 3: Áreas e volumes da figura curva de formato irregular – Planímetro nº. 015456.

	ARE	A PLANI	MTRO 015	456 - 1:50.000	VC	LUME - 1:50.	.000		
C. N.	A 1	A 2	A 3	MEDIA (m ²)	DESVIO	INFERIOR	MORRO A	MORRO B	
60	8,772	8,800	8,942	8838000	0,091148	82345000	27490000	28951666,67	
70	7,612	7,669	7,612	7631000	0,032909	70556666,67	11880000	14425000	
80	6,452	6,537	6,452	6480333	0,049075	59518333,33	8248333,333	10086666,67	
90	5,376	5,433	5,461	5423333	0,043317	47676666,67	5181666,667	6361666,667	
100	4,414	3,763	4,159	4112000	0,328035	-	2681666,667	3391666,667	
A 110	1,386	1,386	1,386	1386000	0	-	479000	975000	TOTAL (m ³)
A 120	0,990	1,018	0,962	990000	0,028	260096666,7	55960666,67	64191666,67	380249000,0
A 130	0,650	0,650	0,679	659666,7	0,016743				
A 140	0,367	0,396	0,367	376666,7	0,016743				
A 150	0,141	0,169	0,169	159666,7	0,016166				
B 110	1,669	1,697	1,669	1678333	0,016166				
B 120	1,216	1,216	1,188	1206667	0,016166				
B 130	0,82	0,792	0,820	810666,7	0,016166				
B 140	0,452	0,481	0,452	461666,7	0,016743				
B 150	0,198	0,198	0,254	216666,7	0,032332				

				-		-			
	ARE	A PLANI	METRO 0	15447 - 1:50.000	VO	LUME - 1:50	.000		
C. N.	A 1	A 2	A 3	MEDIA (m ²)	DESVIO	INFERIOR	MORRO A	MORRO B	
60	8,78	8,78	8,78	8780000	0	81925000	29313333	30708333	
70	7,605	7,577	7,633	7605000	0,028	70460000	11926667	14395000	
80	6,459	6,515	6,487	6487000	0,028	59695000	8291667	10153333	
90	5,48	5,424	5,452	5452000	0,028	49630000	5216667	6611667	
100	4,502	4,418	4,502	4474000	0,048497	-	2743333	3630000	
A 110	1,37	1,398	1,398	1388666,667	0,016166	-	501000	1003500	TOTAL (m ³)
A 120	1,006	0,978	1,006	996666,6667	0,016166	261710000	57992667	66501833	386204500
A 130	0,643	0,671	0,671	661666,6667	0,016166				
A 140	0,391	0,363	0,391	381666,6667	0,016166				
A 150	0,195	0,139	0,167	167000	0,028				
B 110	1,649	1,677	1,677	1667666,667	0,016166				
B 120	1,202	1,23	1,202	1211333,333	0,016166				
B 130	0,81	0,81	0,838	819333,3333	0,016166				
B 140	0,531	0,447	0,531	503000	0,048497				
B 150	0,223	0,223	0,223	223000	0				

Tabela 4: Áreas e volumes da figura curva de formato irregular – Planímetro nº. 015447.

Tabela 5: Áreas e volumes da figura curva de formato irregular – Planímetro nº. 015279.

	AREA O	OM PLA	NIMETRO	0 015279 - 1:50.00	VO	LUME - 1:50	.000]	
C. N.	A 1	A 2	A 3	MEDIA (m ²)	DESVIO	INFERIOR	MORRO A	MORRO B	
60	9,568	9,568	9,477	9537666,667	0,052539	88725000	31991667	33565000	
70	8,258	8,167	8,197	8207333,333	0,046372	76331666,67	13048333	15685000	
80	7,069	7,069	7,039	7059000	0,017321	64951666,67	9240000	10965000]
90	5,972	5,911	5,911	5931333,333	0,035218	54033333,33	5938333	7106666,667	
100	4,845	4,936	4,845	4875333,333	0,052539	-	3246667	3650000	
110 A	1,523	1,523	1,523	1523000	0	-	669000	910500	TOTAL (m ³)
120 A	1,097	1,158	1,005	1086666,667	0,077022	284041666,7	64134000	71882166,67	420057833,3
130 A	0,7	0,853	0,731	761333,3333	0,080885				
140 A	0,426	0,457	0,396	426333,3333	0,030501				
150 A	0,243	0,213	0,213	223000	0,017321				
110 B	1,858	1,797	1,858	1837666,667	0,035218				
120 B	1,34	1,279	1,279	1299333,333	0,035218				
130 B	0,853	0,914	0,914	893666,6667	0,035218				
140 B	0,548	0,548	0,487	527666,6667	0,035218				
150 B	0,182	0.243	0,182	202333,3333	0,035218				

Comparando os valores obtidos com relação aos valores reais (Tabela 1) foi possível verificar que as áreas (medidas três vezes) e os respectivos volumes obtidos pelo planímetro nº 015279 (Tabela 5) se aproximaram mais dos valores reais do que os outros planímetros nº. 015448 (Tabela 2), 015456 (tabela 3) e 015447 (Tabela 4). Os valores de erro obtidos com o planímetro nº 015279 para cada curva de nível foram respectivamente: Curva 60:-2,39%; Curva 70: -1,55%; Curva 80: -2,14%; Curva 90: -2,19%; Curva 100: -2,44%; Curva 110A: 5,45%; Curva 120A: 4,89%; Curva 130A: 6,80%; Curva 140A: 14,98%; Curva 150A: 6,80%; Curva 110B: -14,08%; Curva 120B: -13,73%; Curva 130B: -9,40%; Curva 140B: -5,22%; Curva 150B: 15,43%.

Procurou-se realizar no planímetro n° 015447 um procedimento de recalibração e constatou-se que o resultado do volume a partir da média de três áreas de cada curva obteve um valor 368776833,3m³, o qual foi pior do que o obtido antes de recalibrá-lo, cujo valor foi de 386204500m³ (Tabela 3).

Utilizou-se o procedimento de cálculo de volume usando o modo automático nos planímetros n° 015448 e n° 015456. Realizou-se a medição nas escalas de 1/1000 e em seguida 1/50000, obtiveram-se os seguintes valores respectivamente: Planímetro n° 015448 ($380773762,5m^3$ e $384679473m^3$) e planímetro n° 015456 ($390531395m^3$ e $375627883,4m^3$). Desses valores conclui-se que utilizando o planímetro em uma escala maior (1/1000) não se tem a garantia de que o volume convertido para uma escala menor (1/50000) se aproxime mais do valor real.

Foi realizada também uma medição na escala 1/1000 com o planímetro nº 015447 medindo-se as áreas três vezes e obteve-se o volume de 386286040m³. Mesmo assim não se pôde garantir que o resultado de volume utilizando esse procedimento fosse melhor do que usando o modo automático.

Também foram verificadas as medições dos quatro planímetros utilizados nesses experimentos na folha teste, representada na Figura 3, que acompanha cada instrumento, e utilizada para a calibração do mesmo. Mediu-se a elipse de área 100cm² sete vezes obtendo o seguinte valor médio igual a 100,160cm² para o planímetro n° 015447, o qual apresentou resultados satisfatórios dentro da precisão especificada no manual.

5 CONCLUSÕES

A partir do experimento realizado foi possível constatar a importância da verificação do instrumento mesmo depois do mesmo ter sido calibrado e está pronto para o seu manuseio. Para utilizá-lo mesmo sabendo o quanto ele diverge de um valor real é necessário que seja feita uma correção instrumental, que leve o mesmo a trabalhar dentro de uma margem de erro tolerável.

O trabalho apresenta como resultados um apoio didático com um exemplo explicativo para o manuseio do planímetro digital, um gabarito com os valores reais das áreas e dos volumes das figuras estudadas, obtidas do AutoCAD, servindo de comparação entre os resultados dos planímetros durante o experimento e o valor real.

A concepção de um roteiro para o manuseio do planímetro auxiliará no desenvolvimento de atividades práticas em sala de aula, além de servir de apoio didático para a compreensão do emprego do planímetro digital. Assim, o roteiro elaborado auxiliará ao estudante na compreensão dos conceitos.

AGRADECIMENTOS

À PROACAD UFPE, pela bolsa de apoio acadêmico.

REFERÊNCIAS

DIGIPLAN. Manual Técnico Digital Polar-Planimeter n° 330 e Roll-Planimeter n° 331. Disponível em <u>http://www.haff.com/anleitung300.pdf</u>. Acesso: 14/11/2011..

KAHMEN, H. Vermessungskunde. Aufl. 19. 1997. Walter de Gruyter.

TENÓRIO, B. C.; DE SEIXAS, A. Delimitação e reconstrução tridimensional de bacias hidrográficas a partir de curvas de nível – atividade prática da disciplina de Topografia. II Simpósio Brasileiro de Ciências Geodésicas e tecnologias da Geoinformação. Recife-PE. 2008.

ESPARTEL. L. Curso de Topografia. Porto Alegre: Editora Globo. 7^a. Ed. 1980.

DE SEIXAS, J. J. Determinação de superfícies. DECart/UFPE. 1978.

ERBA, D. A. (ORG.); THUM, A. B.; SILVA, C. A. U. de; SOUZA, G. C. de; VERONZ, M. R.; LENADRO, R. F.; MAIA, T. C. B.; Curso de Topografia para estudantes de Engenharia, Arquitetura e Geologia. Editora Unissinos, 2005.

DOMINGUES, F.; ARANHA, A. Topografía e astronomia de posição: para engenheiros e arquitetos – São Paulo: MacGraw-Hill do Brasil, 1979.

GEMAEL, C. Introdução ao ajustamento de observações: aplicações geodésicas, editora da Universidade Federal do Paraná – UFPR, Curitiba – PR. 1994.

JORDAN, D. W. Tratado general de Topografía. V. I. Barcelona, Editorial Gustavo Gili, S. A.1944.

MANSUR, M. B. AutoCAD 2D básico. Disponível em: <u>http://www.demet.ufmg.br/grad/disciplinas/eqm033/n03autocadbasico.pdf.2011</u>. Acesso: 23/11/2011.

RABELO, A. B.; MANSO, F. F. O planímetro e o teorema de Green. 2004. Disponível em:<(<u>http://www.mat.ufmg.br/comed/2004/e2004/planimetro.pdf</u>)>. Acesso: 23/11/2011.