APLICAÇÃO DE ESTRUTURA GEODÉSICA NO MONITORAMENTO DE ÁREA DE ESCORREGAMENTO DE TERRA

CAROLINA PRESTES MEGER PAESE (1)

RENATA MAGDA CAVALCANTE WERLICH (1) CLAUDIA PEREIRA KRUEGER (1)

SILVIO JACKS DOS ANJOS GARNÉS (2)

 (1) Universidade Federal do Paraná – UFPR Setor de Ciências da Terra Laboratório de Geodésia Espacial e Hidrografia – LAGEH carolina.paese@gmail.com; renatawerlich@gmail.com; ckrueger@ufpr.br

 (2) Universidade Federal de Pernambuco– UFPE Centro de Tecnologia e Geociências – CTG
 Programa de Pós-Graduação em Ciências Geodésicas e Tecnologias da Geoinformação, Recife - PE silvio.jacks@ufpe.br

RESUMO - Este trabalho tem como objetivo determinar os deslizamentos de terra de uma região da formação geológica Guabirotuba com predominância de argilas e areias arcosianas. Para isso, fez-se a definição e implantação de uma estrutura geodésica para o monitoramento dessa região e realizou-se as primeiras observações de um conjunto de técnicas geodésicas, usando posicionamento por satélites do grupo GNSS, o GPS e o GLONASS, assim como nivelamento geométrico de alta precisão, usando nível digital e mira de invar com código de barra. Na primeira fase da pesquisa os resultados em parte foram compatíveis com o que se esperava. Chegou-se a uma discrepância máxima entre o posicionamento pela técnica stop and go e nivelamento geométrico de 2,6cm. Uma análise da diferença entre o nivelamento geométrico e os desníveis GNSS foi apresentada mostrando que para área de estudo, as diferenças de altitudes elipsoidais e altitudes ortométricas com erros inferiores a 7 mm devem ser compatibilizadas ao mesmo referencial. Por final são apresentadas as etapas futuras com alguns dos rigores a serem levados em conta neste tipo de monitoramento.

ABSTRACT - This study aims to determine the landslides in a region of the geological formation Guabirotuba predominantly of clays and sands arcosianas. For this, we defined a geodesic framework for monitoring this area and held the first observations of a set of geodetic techniques, using satellite positioning GNSS group, GPS and GLONASS, as well as leveling of high precision, using digital level and sights with invar bar code. In the first phase of the research results were partly consistent with what was expected. A maximum discrepancy between the positioning technique for stop and go and leveling was of 2,6cm. An analysis of the difference between leveling and GNSS was presented showing that for the study area, differences in ellipsoidal and orthometric heights of less than 7mm errors must be made compatible to the same referential. By the end present the steps and some of the rigors to be carried out this type of monitoring.

1 INTRODUÇÃO

O processo de escorregamento de terra envolve o desprendimento e o transporte de sedimentos em direção as partes mais baixas do terreno. Esse processo tem causas naturais e também pode ter causas antrópicas. Quando são causas naturais, na maioria das vezes está relacionado com variáveis climatológicas, como precipitação, insolação, umidade e vento e tipos de estruturas geológicas. Com as ocupações humanas irregulares nos locais de fragilidade geotécnica, fica potencializada a ocorrência de escorregamentos e de desastres (AMARAL et al., 2011).

Realizando um estudo prévio e depois com visitação in loco, encontrou-se uma área em Curitiba, no Bairro de Guabirutuba, que necessitava de um estudo mais aprofundado em relação ao potencial de escorregamento, pois

C. P. M. Paese, R. M. C. Werlich, C. P. Krueger, S. J. A. Garnés

V Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação

Recife - PE, 12-14 de Nov de 2014

evidencias tais como: a não verticalização de postes, trincas nos muros e nas paredes das casas foram encontrados. Esta área, segundo Felipe (2011), apresenta sedimentos da Formação Guabirotuba, os quais estão distribuídos desde o município de Campo Largo até o município de Quatro Barras, abrangendo Curitiba como um todo e parte dos seis municípios limítrofes. Grande parte desses sedimentos originou-se da decomposição química das rochas Pré – Cambrianas atingindo espessuras de 60 a 80 metros. Tais estruturas compreendem uma sequencia litológica com predominância de argilas e areias arcosianas, contendo de 20 a 40% de feldspato (SALAMUNI, 1998).

Neste trabalho, o objetivo principal foi montar uma estrutura geodésica que permitisse a detecção de pequenos movimentos de terra, na ordem do milímetro, assim como estabelecer a primeiras medições que envolvem o monitoramento da área.

2 METODOLOGIA

O presente estudo foi realizado em uma área de formação argilosa, no bairro Guabirotuba, munícipio de Curitiba, no estado do Paraná. A Figura 1 apresenta a planta de situação do local. Na ilustração detalhada da Figura 1 podem ser visualizadas as curvas de nível e a distribuição geométrica das construções. Nessa área, são encontradas rachaduras em alguns muros, bem como a falta de verticalidade de postes de iluminação pública por conta de provável movimento de terra. Esse movimento de terra é que se propõe o monitoramento por técnicas de posicionamento geodésico.

Figura 1 – Mapa de localização da área de estudo (sem escala) FONTE: Adaptada de Secretaria Municipal do Meio Ambiente da Prefeitura Municipal de Curitiba – Geoprocessamento (2013); IPPUC, 2012.

Os materiais empregados nesse trabalho foram:

- chapas de alumínio com 5cm de diâmetro e inscrições de identificação do vértice geodésico;
- dois receptores Leica© 1200, com as antenas Leica ATX1202 GG calibradas pelo método relativo em nível absoluto na BCAL/LAGEH/UFPR;
- um sistema de transmissão via rádio UHF Ocean Crest, com frequência de 25 KHz.
- nível DNA03 da Leica Geosystems©, com a precisão nominal de 0,3 mm/km de duplo nivelamento;
- um par de sapatas de ferro para realização do nivelamento;
- uma mira de invar com 4m de comprimento e leitura de código de barras;
- software de processamento GNSS Leica Geo Office e Topcon Tools 8.2;
- software de processamento de observações topográficas e geodésicas AstGeoTop;
- pacote de software do Microsoft Office.

C. P. M. Paese, R. M. C. Werlich, C. P. Krueger, S. J. A. Garnés

2.1 Definição da estrutura geodésica de monitoramento e levantamentos de campo

A área da pesquisa foi escolhida após consultas a Secretária da Defesa Civil e a Secretária do Meio Ambiente da Prefeitura Municipal de Curitiba, PR. Dentre as possíveis áreas para estudo, pesou na escolha dessa, a proximidade do centro politécnico que conta com toda a infraestrutura do Departamento de Geomática da UFPR, envolvendo os laboratórios LAGEH e LATOPO. A amarração geodésica da estrutura ao Sistema Geodésico Brasileiro (SGB) foi outro fator decisivo para a escolha da área, pois as linhas de base à estação UFPR da RBMC são curtas, propiciando facilidades na resolução das ambiguidades GPS. A ligação a Rede Altimétrica de Alta Precisão (RAAP) do SGB também ficou facilitada pela proximidade da RN2053D com a área, tendo um circuito de nivelamento de aproximadamente 2km.

As informações da RN2053D foram obtidas por meio do banco de dados do Instituto Brasileiro de Geografia e Estatística (IBGE), conforme ilustra a Figura 2.

stação :	2053D	Nome da Estação :	2053D		
Município :	CURITIBA	2010900			
Última Visita:	19/8/2003	Situação Marco Princi	ipal: Bom		
Conexões :	EG: 8113274				
	DADOS PLANIM	ÉTRICOS	DADO	S ALTIMÉTRICOS	
Latitude Longitude Fonte Origem S Datum A Data Med D Data Cálc 6 Sigma Lai 9 Sigma Loi UTM(N) UTM(N) UTM(C)	e dição culo stifude(m) ngitude(m)	25 ° 27 ' 10 ° S 49 ° 13 ' 57 "W GPS Navegação SAD-69 19/8/2003 7.183.727 677.717 -51	Altitude Ortométria Fonte Sigma Altitude (m, Datum Data Medição Data Cálculo	a(m) Nivelamento	914,3833 Geométrico 0.04 Imbituba 22/8/1983 15/6/2011

Figura 2 – RN 2053 da RAAP na cidade de Curitiba-PR Fonte: IBGE (2014)

As coordenadas da estação UFPR/RBMC utilizadas no processamento dos dados GNSS, foram obtidas a partir do descritivo da estação e podem ser obtidas do site: ftp://geoftp.ibge.gov.br/RBMC/relatorio/Descritivo_UFPR.pdf.

Coordenadas Geodésicas								
Latitude:	- 25° 26' 54,1269"	Sigma:	0,001 m					
Longitude:	- 49° 13' 51,4372"	Sigma:	0,001 m					
Alt. Elip.:	925,81 m	Sigma:	0,004 m					
Alt. Orto .:	922,14 m	Fonte:	GPS/MAPGEO2010					

Quadro 1 - Coordenadas da estação URPF/RBMC em SIRGAS2000 (Época 2000.4)

As chapas de alumínio foram fixadas em locais, cuja geometria permitiu formar uma rede geodésica de ótimo design com rigidez suficiente para não introduzir soluções falsas pelo mal condicionamento dos sistemas de equações normais de mínimos quadrados. Essa análise foi feita pela simulação da geometria de pontos que envolviam intervisibilidade e significância do monitoramento do movimento de terra usando a norma de Frobenius da matriz cofatora dos parâmetros. Desta forma 17 pontos foram implantados conforme mostra a Figura 3.

O nivelamento da RN 2053D passando pelos pontos da rede geodésica, obedeceu ao critério de visadas a iguais distâncias do nível a mira (método do ponto médio ou das visadas iguais), sendo que a distância máxima não ultrapassou a 25m. O processamento dos circuitos de nivelamento foram feitos usando o módulo nivelamento geométrico do software AstGeoTop, o qual permite ajustar os circuitos de nivelamento e contra nivelamento pela proporcionalidade das distâncias niveladas, fornecendo, além das altitudes ajustadas, o erro de fechamento e a precisão do circuito nivelado, bem como de um circuito fechado se for o caso.

C. P. M. Paese, R. M. C. Werlich, C. P. Krueger, S. J. A. Garnés

Figura 3 – Estrutura geodésica de monitoramento de área de estudo no Bairro de Guabirutuba, município de Curitiba, PR. FONTE: imagem da Secretaria Municipal do Meio Ambiente da Prefeitura Municipal de Curitiba – Geoprocessamento (2013).

Foi definida uma base GNSS local, no ponto denominado M001, por transporte de coordenadas a partir da estação UFPR/RBMC. Neste ponto base os dados foram adquiridos com intervalo de gravação de 15 segundos e máscara de elevação de 10°, pelo período de 6 horas. Nos processamentos foram utilizados os *software Leica Geo Office 7.0*® e também o software *Topcon Tolls* 8.2. O rastreio dos demais pontos da rede foi feito usando a técnica RTK, armazenando os dados brutos para o pós-processamento na técnica *stop and go*. Neste levantamento a coleta de dados ocorreu a um intervalo de gravação de 1 segundo e máscara de elevação de 10°. Como houve problemas com a radio transmissão das correções das fases das portadoras durante o levantamento, e os resultados por RTK não foram factíveis de serem utilizados.

3 RESULTADOS E DISCUSSÕES

Nessa seção são apresentados os resultados dos levantamentos realizados para da determinação dos desníveis obtidos pelo nivelamento geométrico e do posicionamento geodésico obtidos pela técnica *stop and go*.

O transporte de coordenadas processadas no *software Leica Geo Office* 7.0® e no *topcon tools* 8.2 seguem apresentados na Tabela 1.

Software	Ponto	Latitude	σφ	Longitude	σλ	Altitude	σh
						Elipsoide	
Topcon	UFPR	25°26'54,12690'' S	0,000	49°13'51,43720"W	0,000	925,810m	0,000
Tools	Marco1	25°27'50,39105''S	0,001	49°14'20,91776''W	0,001	915,873m	0,002
Leica Geo	UFPR	25°26'54,12690'' S	0,000	49°13'51,43720"W	0,000	925,810m	0,000
Office	Marco1	25°27'50,39117"S	0,0001	49°14'20,91780''W	0,0001	915,852m	0,0003
Discrep.	Marco1	0,0037m	***	0,001m	***	0,021m	***

Tabela 1 - Transporte de coordenadas do ponto UFPR/RBMC para área de estudo em SIRGAS2000

C. P. M. Paese, R. M. C. Werlich, C. P. Krueger, S. J. A. Garnés

V Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação

O valor final das coordenadas da base foi considerado como a média aritmética entre o processamento dos dois softwares:

Marco 1

$$\begin{cases}
25^{\circ}27'50,39105"S \quad (\sigma\phi=0,001m) \\
49^{\circ}14'20,91776"W \quad (\sigma\lambda=0,001m) \\
915,873m \quad (\sigmah=0,002m)
\end{cases}$$

Para os demais pontos embora tenham sido processados em ambos os softwares, a Tabela a seguir apresenta apenas os resultados do software *Leica Geo Office* 7.0[®].

Ponto	Latitude	σφ	Longitude	σλ	h	σh
					Elipsoidal	
M001	25°27'52,85290"S	0,003	49°14'25,13383''W	0,003	910,537	0,009
M002	25°27`54,42092''S	0,003	49°14'27,69919"W	0,002	901,452	0,007
M003	25°27'53,54151"S	0,003	49°14'29,60864''W	0,003	898,955	0,010
M004	25°27'55,02883"S	0,003	49°14'28,64847''W	0,002	898,969	0,008
M005	25°27'55,97274"S	0,002	49°14'27,83746''W	0,002	899,372	0,005
M006	25°27'56,15642"S	0,002	49°14'27,07413"W	0,002	900,377	0,005
M007	25°27'55,56123"8	0,002	49°14'26,10808''W	0,002	904,615	0,005
M008	25°27'54,92047"S	0,002	49°14'25,00413''W	0,002	908,666	0,005
M009	25°27'58,00216"S	0,003	49°14'25,01726''W	0,003	900,344	0,009
M010	25°27'56,89165"S	0,002	49°14'23,49900''W	0,002	903,114	0,006
M011	25°27`55,67111"S	0,003	49°14'21,69906''W	0,002	904,160	0,008
M012	25°27'54,68452"S	0,002	49°14'20,08335''W	0,002	907,656	0,007
M013	25°27'53,88068''S	0,002	49°14'18,74214''W	0,006	911,401	0,006
Marco1(Base)	25°27'53,39105"S	0,000	49°14'20,91776"W	0,000	915,873	0,000
Marco2	25°27'51,58949"S	0,003	49°14'20,22948''W	0,003	915,184	0,009
Marco3	25°27`50,62194`'S	0,004	49°14'20,75950''W	0,004	915,645	0,015

Tabela 2 - Coordenadas dos pontos que compõe a estrutura geodésica de monitoramento em SIRGAS2000

O nivelamento geométrico partindo da RN 2053D até o Marco 1 resultou num desnível de -2,4155 m, cujo perfil é ilustrado na Figura 4 e o caminhamento da seção ilustrado na imagem da Figura 5. O erro de fechamento foi de 13,6mm, numa distância média entre o nivelamento e o contra nivelamento de 1.698,98 m. Assim, a precisão do duplo nivelamento resultou em 5,2mm/km, muito aquém do desejável. A meta para o monitoramento desta área é atingir precisão melhor que 1mm/km.

Figura 4 - Perfil do terreno desde a RN 2353D até o Marco 1 na área de monitoramento

C. P. M. Paese, R. M. C. Werlich, C. P. Krueger, S. J. A. Garnés

V Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação

Recife - PE, 12- 14 de Nov de 2014

Figura 5 – Seção de nivelamento para transporte da altitude ortométrica a área de monitoramento Fonte da imagem: Google Earth.

Os resultados dos desníveis das seções de niveladas entre os marcos (Figura 3) na área de monitoramento são apresentados na Tabela 3. Nesta tabela também são apresentados os desníveis usando a diferença de nível das altitudes elipsoidais fornecidas pelo processamento GNSS (Tabela 2).

Linha de nivelamento		Desnível			Linha de nivelamento			Desnível			
Linha	Início	Fim	NG (m)	GNSS (m)	DA (m)	Linha	Início	Fim	NG (m)	GNSS (m)	DA (m)
1	M001	Marco 1	4,8896	5,3360	-0,4464	11	M010	M008	5,5565	5,5520	0,0045
2	M002	M001	9,0984	9,0850	0,0134	12	M009	M010	2,7726	2,770	0,0026
3	M003	M002	2,5062	2,4970	0,0092	13	M010	M011	1,0441	1,0460	-0,0019
4	M004	M003	0,0030	-0,0140	0,017	14	M011	M012	3,5013	3,4960	0,0053
5	M004	M002	2,5092	2,4830	0,0262	15	M012	M013	3,7548	3,7450	0,0098
6	M005	M004	-0,4205	-0,4030	-0,0175	16	M013	Marco 1	4,0210	4,4720	-0,4510
7	M005	M006	1,0028	1,0050	-0,0022						
8	M006	M009	-0,0196	-0,0330	0,0134						
9	M006	M007	4,2487	4,2380	0,0107						
10	M007	M008	4,0629	4,0510	0,0119						

Tabela 3 – seções de nivelamento e desníveis elipsoidais por GNSS

NG : Nivelamento Geométrico

DA : Discrepância

A menos de algum problema que ocorreu no momento do rastreio no Marco 1, os demais desníveis tiveram uma discrepância máxima de 2,6cm entre o posicionamento GNSS e o nivelamento geométrico. Para analisar se estas diferenças são causadas pela diferença entre as altitudes ortométricas e elipsoidais, fez-se os cálculos das ondulações geoidais e desvio da vertical, usando o módulo Modelo Geoidal do software AstGeoTop. O quadro 01 apresenta as ondulações interpoladas do modelo MAPGEO 2010, bem como as correspondentes componentes do desvio da vertical e o próprio desvio da vertical entre os SIRGAS2000 e o "Geoide brasileiro" nos pontos.

C. P. M. Paese, R. M. C. Werlich, C. P. Krueger, S. J. A. Garnés

Quadro 2 Cálculo das ondulações georidais para área de estudo

Qua	u10 2 - Calcul	o das olidulações geol	uais para area ue este	iuo							
	Modelo Geoidal : MAPGEO2010										
	Sistema Geo	Sistema Geodésico de Referência : SIRGAS2000									
	Interpolação bilinear dos valores de N										
	Grade de 5` x 5` em latitude e longitude										
	Arquivo Fonte : MAPGEO2010_SIRGAS.DAT										
	Número de linhas do Arquivo = 265680										
	Pto	Latitude	Longitude	N(m)	H.ort.(m) Xi	Eta	D.Vertical				
	M001	-25°27`52,85290"	-49°14`25,13383"	3,6714	906,8656 -1,0314"	4,3751"	4,4950"				
	M002	-25°27`54,42092"	-49°14`27,69919"	3,6727	897,7793 -1,0295"	4,3764"	4,4959"				
	M003	-25°27`53,54151"	-49°14`29,60864"	3,6740	895,2810 -1,0281"	4,3757"	4,4948"				
	M004	-25°27`55,02883"	-49°14`28,64847"	3,6732	895,2958 -1,0288"	4,3769"	4,4962"				
	M005	-25°27`55,97274"	-49°14`27,83746"	3,6725	95,6995 -1,0294"	4,3777"	4,4971"				
	M006	-25°27`56,15642"	-49°14`27,07413"	3,6721	896,7049 -1,0300"	4,3778"	4,4974"				
	M007	-25°27`55,56123"	-49°14`26,10808"	3,6716	900,9434 -1,0307"	4,3774"	4,4971"				
	M008	-25°27`54,92047"	-49°14`25,00413"	3,6710	904,9950 -1,0315"	4,3768"	4,4967"				
	M009	-25°27`58,00216"	-49°14`25,01726"	3,6706	896,6734 -1,0315"	4,3794"	4,4992"				
	M010	-25°27`56,89165"	-49°14`23,49900"	3,6698	899,4442 -1,0326"	4,3785"	4,4986"				
	M011	-25°27`55,67111"	-49°14`21,69906"	3,6689	900,4911 -1,0340"	4,3774"	4,4979"				
	M012	-25°27`54,68452"	-49°14`20,08335"	3,6681	903,9879 -1,0352"	4,3766"	4,4974"				
	M013	-25°27`53,88068"	-49°14`18,74214"	3,6675	907,7335 -1,0362"	4,3760"	4,4970"				
	Marco1	-25°27`53,39105"	-49°14`20,91776"	3,6688	912,2042 -1,0346"	4,3756"	4,4962"				
	Marco2	-25°27`51,58949"	-49°14`20,22948"	3,6687	911,5153 -1,0351"	4,3741"	4,4949"				
	Marco3	-25°27`50,62194"	-49°14`20,75950"	3,6692	911,9758 -1,0347"	4,3733"	4,4940"				

No quadro 2, tomando a máxima e a mínima ondulação geoidal interpolada, a discrepância entre elas resultou em 6,5mm. O desvio da vertical tem grandeza de 5" para a área de estudo. Assim, para uma distância de 300m, que envolve toda a área de implantação do marcos, a diferença relativa entre geoide e elipsoide seria de 7,2mm. Desta forma, qualquer das discrepância da Tabela 3 que ultrapassar a 7mm é erro na altimetria da técnica usada pelo GNSS. Se for utilizada uma técnica mais acurada, como por exemplo, estático, pode-se obter acurácia melhor que 7mm, passando a ser necessária a adequação dos desníveis ao mesmo referencial.

4 CONCLUSÕES

Tendo por base o desenvolvimento deste trabalho, o objetivo proposto foi plenamente alcançado, pois se deu a definição e implantação da estrutura geodésica do monitoramento da área de escorregamento, além dos primeiros conjuntos de observações e resultados.

No entanto, novos resultados precisam ser obtidos e a partir dessa experiência. Viu-se que o posicionamento GNSS pós-processado na técnica stop and go, para a altimetria atingiu erros de 2,6cm quando comparados com o nivelamento geométrico. Sabe-se que para esta técnica, esse resultado é satisfatório, mas quando se almeja algo melhor que 1cm de acurácia, o metodologia carece de maiores cuidados. Como os deslizamentos que ocorrem na região não são tão sensíveis a curto período, então se deve usar todo o conjunto de tecnologias disponíveis na Geodésia. Para isso, as novas etapas da pesquisa serão feitas com o uso do posicionamento geométrico com redes simultâneas e não simultâneas; antenas GNSS calibradas antes de cada campanha; nivelamento geométrico com precisão melhor que 1mm/km; interseção a vante em pontos estratégicos nos muros e monumentos que demonstram instabilidade à verticalização, medidas de distâncias eletrônicas usando alvos de fitas reflexivas e estação total aferida.

AGRADECIMENTOS

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), ao Programa de Pós-Graduação em Ciências Geodésicas (PPGCG), ao Laboratório de Geodésia Espacial e Hidrografia (LAGEH) e à Universidade Federal do Paraná (UFPR).

Este trabalho tem financiamento do CNPq através do projeto número 483044/2013-0 intitulado "Desenvolvimento de sistemas de monitoramento de massas aplicados na prevenção de desastres naturais".

C. P. M. Paese, R. M. C. Werlich, C. P. Krueger, S. J. A. Garnés

REFERÊNCIAS

ABNT, NBR 13.133 - EXECUÇÃO DE LEVANTAMENTO TOPOGRÁFICO. Maio de 1994.

AMARAL, R; GUTJAHR, M. R. **DESASTRES NATURAIS**. In: Série Cadernos de Educação Ambiental, volume 8. São Paulo: IG/SMA, 2011. 100 p.

FELIPE, R. S. CARACTERÍSTICAS GEOLÓGICO-GEOTÉCNICAS NA FORMAÇÃO GUABIROTUBA CURITIBA. MINEROPAR, 2011 (1ª Edição). 48p.

IBGE (2014). **Sistema Geodésico Brasileiro: Banco de Dados Geodésicos – Modo Textual.** Disponível em< http://www.bdg.ibge.gov.br/bdg/pdf/relatorio.asp?L1=2053D> Acesso 25 jul 2014.

IPPUC. **BASE CARTOGRÁFICA DA CIDADE DE CURITIBA – DIVISA DE BAIRROS.** Disponível em: http://ippuc.org.br/geodownloads/geo.html. Atualizado em 01 de outubro de 2012. Acesso em 05 de junho de 2014.

KRUEGER, C. P., **POSICIONAMENTO POR SATÉLITES**. Apostila do Curso de Especialização em Geotecnologias – Departamento de Geomática, Universidade Federal do Paraná. Curitiba, 2006.

SALAMUNI; E. **TECTÔNICA DA BACIA SEDIMENTAR DE CURITIBA** (**PR**). Tese de Doutorado em Geologia Regional. Rio Claro: IBGE – Cp de Rio Claro – UNESP, 1998.

GARNÉS, S. J. A.; SOUZA, A. N.; MENDONÇA, F. J. B.; KRUEGER, C. P. A ACURÁCIA DO POSICIONAMENTO GNSS EM ÁREAS URBANAS DESORDENADAS TENDO COMO REFERÊNCIA A POLIGONAÇÃO CLÁSSICA. VIII Colóquio Brasileiro de Ciências Geodésicas. Curitiba, 3 a 5 de dezembro de 2013. Curitiba, Paraná.

GARNÉS, S.J.A; AstGeoTop. Software. Departamento de Engenharia Cartográfica. Universidade Federal de Pernambuco. Recife, 2014.

WILLGALIS, S.; SEEBER, G.; KRUEGER, C. P.; ROMÃO, V. M. C. A REAL TIME GPS REFERENCE NETWOLR FOR RECIFE, BRASIL, ENABELING PRECISE AND RELIABLE CADASTRAL SURVEYS. FIG XXII International Congress. Washington, D.C. USA, April 19-26 2002.

C. P. M. Paese, R. M. C. Werlich, C. P. Krueger, S. J. A. Garnés