Agradecimentos

Muito esforço foi dedicado à elaboração deste livro envolvendo a participação de alunos estagiários e aqueles matriculados nas disciplinas afins, e que espontaneamente prestaram sua colaboração. Os autores gostariam de agradecer aos alunos André Luiz de Lima Torres, Amanda Souza de Paula, Eric Albert Bouton, Luciano Antônio Calmon Lisboa, Marinaldo Diógenes Lourenço Júnior, Raffaello Bruno Limongi Freire, Sérgio Romero Oliveira de Souza, Tiago Henrique Falk e Xin Jin Shou pela formatação desta obra e pela valiosa contribuição na busca de novas informações que pudessem destacar seu conteúdo em relação aos textos existentes. Agradecimento especial é feito pelos autores ao mestrando Fábio Rodrigo de Lima e Silva por sua dedicação e envolvimento na elaboração deste livro, utilizando seu valioso tempo na formatação, pesquisa, seleção de artigos, correção etc. Contribuiu fortemente na elaboração da Seção 2.12: Tópicos especiais: antenas planares.
Prefácio

No Capítulo 1, o mecanismo de propagação de ondas eletromagnéticas no espaço livre e em estruturas guiadas é descrito de maneira didática e compreensível, mantendo, entretanto, o rigor que se exige em um curso de Nível Superior. Evitaram-se aqui as deduções de expressões matemáticas mais envolventes, descritivas das grandezas eletromagnéticas, e que podem ser facilmente encontradas em outros textos afins. O tema Propagação Eletromagnética é aqui tratado visando levar o leitor a um melhor entendimento do projeto de um enlace de microondas em visada direta, assunto esse tratado no último capítulo.

O Capítulo 2 introduz os conceitos básicos relativos às antenas, bem como a descrição de vários tipos para as diversas faixas de frequência usualmente encontradas em aplicações do dia-a-dia. Um longo texto é dedicado às antenas parabólicas, por serem elas comumente usadas em projetos de radioenlace. O texto é intencionalmente enriquecido de fotografias e desenhos necessários a um melhor entendimento de sua construção e operação. Detalhes sobre cálculo de direitividade, diagrama de radiação, relação frente-costas etc, são aqui omitidos por não serem objetivo deste livro.
O uso de R.F. na identificação de partes que compõem um sistema (em assuntos de segurança, por exemplo) tem exigido maior conhecimento e desenvolvimento de antenas planares. O texto dedica parte do Capítulo 2 à descrição de algumas antenas planares com suas diversas aplicações, incluindo RFID (Radio Frequency Identification). Figuras e características de protótipos de antenas planares desenvolvidas no Laboratório de Fotônica do Dep. de Eletrônica e Sistemas são apresentadas nesse Capítulo.

Existem poucas referências em língua portuguesa que tratam de cálculo de radioenlace em microondas. O Capítulo 3 trata desse tema, e grande parte de seu conteúdo foi extraído de notas de aula utilizadas na disciplina Propagação Eletromagnética do Curso de Eng. Elétrica/Eletrônica. Muito do que se incluiu neste trabalho, e de natureza prática, decorreu da experiência adquirida pelos autores pela participação em vários projetos de pesquisa e desenvolvimento envolvendo a UFPE e empresas privadas do setor de Telecomunicações, como a Siemens Ltda e a PARKS S.A Comunicações Digitais.
Índice

1 PROPAGAÇÃO ELETROMAGNÉTICA .. 13
 1.1 BREVE HISTÓRIA DO ELETROMAGNETISMO ATÉ HERTZ 15
 1.2 CONCEITO DE ONDA ... 17
 1.3 ONDAS MECÂNICAS E ELETROMAGNÉTICAS 18
 1.4 ONDAS GUIADAS E NÃO-GUIADAS .. 18
 1.5 TIPOS DE ONDAS .. 19
 1.5.1 Ondas transversais ... 19
 1.5.2 Ondas longitudinais ... 20
 1.6 CARACTERÍSTICAS DAS ONDAS (AMPLITUDE, VELOCIDADE,
 COMPRIMENTO DE ONDA, PERÍODO E FREQUÊNCIA) 21
 1.7 POLARIZAÇÃO DA ONDA .. 23
 1.8 VETOR DE POYNTING ... 25
 1.9 FRENTE DE ONDA .. 26
 1.10 MEIOS DE TRANSMISSÃO .. 28
 1.10.1 Ionoesfera ... 29
 1.10.2 Mesosfera ... 31
 1.10.3 Estratosfera ... 32
 1.10.4 Troposfera ... 32
 1.11 MECANISMOS DE PROPAGAÇÃO .. 33
 1.12 PROPAGAÇÃO NAS LIGAÇÕES EM MICROONDAS, EM VEIBILIDADE ... 39
 1.12.1 Ligação ideal .. 39
 1.12.2 Refração atmosférica ... 41
 1.12.3 Raio terrestre equivalente e fator K 42
 1.12.4 Efeitos do terreno na propagação 45
 1.12.5 Efeitos dos obstáculos .. 47
 1.12.6 Zonas de Fresnel .. 48
 1.13 PROPRIEDADES DA ELIPSE ... 54
 1.13.1 Cálculo da defasagem entre raios de Fresnel 57
 1.14 EFEITO DOS OBSTÁCULOS NAS LIGAÇÕES DE RÁDIO 59
 1.14.1 Obstrução tipo gume de faca .. 60
 1.15 REFLEXÕES NO SOLO ... 65

2 ANTENAS ... 69
 2.1 INTRODUÇÃO ... 71
 2.2 CONCEITO ... 71
 2.3 DEFINIÇÕES ... 72
 2.3.1 Campos próximos e campos distantes 72
 2.3.2 Circuito equivalente de uma antena 74
2.3.3	Reciprocidade	75
2.4	ALIMENTAÇÃO DE UMA ANTENA	76
2.5	LARGURA DE BANDA	80
2.6	PARÂMETROS DAS ANTENAS	81
2.6.1	Potência total radiada	81
2.6.2	Intensidade de radiação	82
2.6.3	Diretividade	83
2.6.4	Eficiência	85
2.6.5	Ganho	85
2.6.6	Impedância de entrada	86
2.6.7	Diagrama de radiação	87
2.6.8	Largura de feixe	91
2.7	ANTENAS PARA VHF E UHF	92
2.7.1	Antena do tipo dipolo	92
2.7.1.1	Alimentação	92
2.7.1.2	Impedância de entrada	93
2.7.1.3	Largura do feixe	93
2.7.1.4	Diretividade e ganho	94
2.7.1.5	Polarização	94
2.7.2	Dipolo dobrado	94
2.7.3	Antenas com elementos parasitas (vágis, quagis, quadra cúbica)	96
2.7.4	Antena vágis	96
2.7.4.1	Característica	97
2.7.5	Antena log-periódica	97
2.7.6	Antena helicoidal ou hélice	98
2.8	ANTENAS PARA MICROONDAS	99
2.8.1	Introdução	99
2.8.2	Tipos de antenas para microondas	101
2.8.3	Componentes das antenas	102
2.8.3.1	Refletores	102
2.8.3.2	Alimentadores	109
2.8.3.2.1	Alimentadores do tipo dipolo	115
2.8.3.2.2	Alimentadores do tipo guia de onda (horn)	118
2.8.3.3	Radomes	126
2.8.4	Características elétricas	129
2.8.5	Campos próximos e campos distantes	129
2.8.6	Diagrama de radiação	130
2.8.7	Largura de feixe	131
2.8.8	Atenção do lóbulo lateral e relação frente-costas	132
2.8.9	Polarização	132
2.8.10	Abertura, diretividade, ganho e eficiência.	134
2.8.11 Coeficiente de onda estacionária e faixa de utilização 138
2.9 CLASSIFICAÇÃO DAS ANTENAS ... 139
 2.9.1 Antenas simétricas .. 139
 2.9.2 Antenas assimétricas (offset) ... 141
2.10 TIPOS DE ANTENAS PARA MICROONDAS 144
 2.10.1 Antena parabólica tipo grade (grid) 144
 2.10.2 Antenas parabólicas de alto desempenho 145
 2.10.3 Antenas parabólicas do tipo cassgrain 147
 2.10.4 Antenas do tipo corneta (horn) 149
 2.10.5 Antena tipo concha (shell) .. 151
 2.10.6 Repetidores passivos ... 153
2.11 LINHAS DE TRANSMISSÃO (ALIMENTAÇÃO DAS ANTENAS) 159
 2.11.1 Cabos coaxiais ... 160
 2.11.2 Guias de onda ... 161
 2.11.3 Guias de onda para polarização simples 163
 2.11.4 Guias de onda retangulares .. 165
 2.11.5 Guias de onda elípticos .. 169
 2.11.6 Guias de onda para dupla polarização 170
 2.11.7 Guias de onda circulares ... 170
2.12 TÓPICOS ESPECIAIS: ANTENAS PLANARES 174
 2.12.1 Introdução ... 174
 2.12.2 Tipos de antenas planares .. 175
 2.12.3 Aplicações das antenas planares 179
 2.12.4 Exemplos de antenas planares 183

3 CÁLCULO DE RADIOENLACE ... 187

 3.1 INTRODUÇÃO ... 189
 3.2 BALANÇO DE POTÊNCIAS EM UM ENLACE 189
 3.3 ATENUAÇÃO DE ESPAÇO LIVRE PARA ANTENAS ISOTRÓPICAS 190
 3.4 ATENUAÇÃO DEVIDA A PRECIPITAÇÕES (COM ÉNFASE EM CHUVAS) . 197
 3.4.1 Método ITU-R .. 199
 3.5 ABSORÇÃO POR GASES .. 203
 3.6 INTERFERÊNCIA ... 206
 3.7 INTRODUÇÃO AO DESVANECEMENTO 207
 3.7.1 Desvanecimento plano .. 207
 3.7.1.1 Introdução ... 207
 3.7.1.2 Quantização do desvanecimento plano 207
 3.7.2 Desvanecimento seletivo em frequência 212
 3.7.2.1 Introdução ... 212
 3.7.2.2 Modelagem do canal de R.F 214
 3.7.2.3 Quantização do desvanecimento seletivo 217
 3.7.2.3.1 Modelagem simplista 217
3.7.2.3.2 Modelagem estendida..219
3.7.2.3.3 Distribuição de probabilidade da amplitude relativa do eco (b)..221
3.7.2.3.4 Distribuição de probabilidade da diferença de retardo de grupo (τ)..222
3.7.2.3.5 Distribuição de probabilidade do deslocamento da frequência de cunha (notch) (Δ F)..224
3.7.2.3.6 Cálculo da probabilidade de queda devida ao desvaneecimento seletivo (Pd)..225

3.8 DIVERSIDADE...227
3.8.1 Introdução...227
3.8.2 Diversidade de espaço..229
 3.8.2.1 Fator de melhoria para o desvaneecimento plano..231
 3.8.2.2 Fator de melhoria para o desvaneecimento seletivo..232
3.8.3 Diversidade de frequência..232
 3.8.3.1 Fator de melhoria para o desvaneecimento plano..233
 3.8.3.2 Fator de melhoria para o desvaneecimento seletivo..233
3.8.4 Fator de redução para a configuração (n+1)..234
3.8.5 Diversidade angular..236

3.9 MELHORIA DEVIDA À INCLINAÇÃO DA TRAJETÓRIA237

BIBLIOGRAFIA..239

LISTA DE ABRREVIAÇÕES...245

ÍNDICE REMISSIVO..247