RECONSTRUÇÃO 3D DA IGREJA NOSSA SENHORA DO ROSÁRIO, BAIRRO DA VÁRZEA, RECIFE – PERNAMBUCO COM EMPREGO DE ESTAÇÃO TOTAL

CAMILA RIBEIRO DO NASCIMENTO ¹
TÁCITO RICHARLES FERREIRA DA SILVA²
ANDRÉA DE SEIXAS³

Universidade Federal de Pernambuco - UFPE
Centro de Tecnologia e Geociências - CTG
Departamento de Engenharia Cartográfica, Recife, PE

1,2 Curso de Graduação em Engenharia Cartográfica

Programa de Pós-Graduação em Ciências Geodésicas e Tecnologias da Geoinformação cml_ribeiro@hotmail.com, tacitotrfs@hotmail.com, aseixas@ufpe.br

RESUMO – A extração e reconstrução das formas arquitetônicas a partir de dados adquiridos através de pontos irradiados com a utilização de estação total é a principal proposta do artigo. As construções arquitetônicas antigas, principalmente a do período colonial que passaram por diversas reformas, e a representação geométrica digital em 3D é uma maneira de eternizar e documentar características da arquitetura recifense da época. Os métodos terrestres de medição topográfica com o emprego de estações totais auxiliam a medição e detecção de formas arquitetônicas. Este equipamento universal realiza medições angulares e lineares, utilizadas para a determinação 3D de coordenadas de pontos de detalhes, calculadas analiticamente para a elaboração e representação gráfica, no contexto deste trabalho, para a reconstrução tridimensional de edificações históricas com a utilização do *software* AutoCad 2D e 3D. A edificação escolhida foi a Igreja de Nossa Senhora do Rosário, no Bairro da Várzea, Recife – PE, localizada próxima a Universidade Federal de Pernambuco. As técnicas de medição usadas para coleta de dados foram executadas com a utilização de estação total, com principal objetivo de densificar e posicionar em campo pontos de referência planialtimétricos no entorno da obra arquitetônica, assim como pontos associados aos detalhes de sua construção.

ABSTRACT

The extraction and reconstruction of forms of architectural forms from data acquired through irradiated points using total station is the main purpose of the article. The old architectural buildings, especially the colonial period that went through several reforms, and digital geometric 3D representation is a way to immortalize and document recifense architecture of period features. Terrestrial methods of topographic measurement with the use of total stations help the measurement and detection of architectural forms. This universal machine performs angular and linear measurements used for the 3D determination of details coordinates of points, calculated analytically for the preparation and imaging in the context of this work, for three-dimensional reconstruction of historic buildings with the use of 2D AutoCad software and 3D. The chosen building was the Church of Our Lady of the Rosary, in the Lowland District, Recife - PE, located near the Federal University of Pernambuco. The measurement techniques used for data collection were performed using total station, with the main objective to densify and position in the field planialtimetric landmarks surrounding the architectural work, as well as points associated with the details of its construction.

1. INTRODUCÃO

A Igreja de Nossa Senhora do Rosário, objeto de estudo, foi a primeira capela da Várzea datada de 1612, e hoje Igreja Matriz de Nossa Senhora do Rosário. Nela foi sepultado, em 1648, Dom Antônio Felipe Camarão, Governador dos Índios e que se destacou nas lutas para a expulsão dos Holandeses na capitania de Pernambuco.

A área que se encontra a obra arquitetônica está localizada no bairro da Várzea, a oeste da cidade do Recife, fica entre os bairros do Curado, Cidade Universitária, Iputinga e Caxangá. Além de estar situada próxima a Universidade Federal de Pernambuco (UFPE). Sua distribuição urbanística apresenta vários casarões ricos em arquitetura barroca, como também as igrejas, e as residências em sua maioria são casas e os poucos prédios, que tem geralmente são de até seis andares. Lugar ideal para a realização de experimentos de levantamentos, que possam fazer uma descrição do local, e de maneira bem mais detalhada, envolvendo a reconstrucão virtual de suas edificações.

Na atualidade existem diversas metodologias para se obter o documento cartográfico para reconstrução tridimensional de objetos, edificações e monumentos arquitetônicos, que vão desde o método de medição direta, uso da trena e outros materiais, e medição indireta, com uso de equipamentos eletrônicos, para determinação de medidas lineares e angulares.

De maneira bem mais completa o levantamento topográfico para a determinação das coordenadas e altitudes de cada ponto com o intuito de desenvolver um modelo tridimensional do objeto, para assim se ter conhecida a localização geográfica do mesmo, de forma a "amarrar" o levantamento aos marcos geodésicos legalizados pelo IBGE. Os métodos de levantamentos com o uso da Fotogrametria, a partir de fotografias terrestres, ou através de dados extraídos de plantas arquitetônicas analógicas ou digitais podem ser utilizados para a reprodução dos objetos em 3D.Contudo as técnicas de levantamentos topográficos têm uma maior precisão nas coletas de dados tendo suas discrepâncias na ordem dos milímetros, já a prescrição dos levantamentos fotogramétricos tem a suas discrepâncias na ordem dos centímetros.

O processo de reconstrução digital da Igreja de Nossa Senhora do Rosário pode ser dividido em duas partes: a primeira com o reconhecimento e a coleta de dados em campo, utilizando-se técnicas do levantamento topográfico, e na segunda, efetua-se a reconstrução propriamente dita com o uso de ferramentas computacionais, empregado pela sua eficiência e praticidade, principalmente para se ter uma boa reprodução tridimensional do objeto de estudo, utilizando, por exemplo, o *software* AutoCAD 2D e 3D.

2. METODOLOGIA DO TRABALHO 2.1. Delimitação da Área de Estudo

A área de estudo está localizada no Bairro da Várzea. Segundo a Prefeitura do Recife (2010), a população é de 70.453 habitantes numa área de 2.255 hectares. Nas imagens das Figuras 1 e 2, colhidas no *Google Maps*, observa-se o limite do Bairro da Várzea dentro dos limites do Município do Recife — PE (Figura 1). E com um polígono hachurado na cor azul na ortofotocarta está o objeto de estudo, que abrange a Igreja de Nossa Senhora do Rosário dentro dos limites do Bairro da Várzea (Figura 2). A área de estudo, onde situa-se a igreja é delimitada pelas ruas: Rua Francisco Lacerda e a Rua Francisco Lisboa.

Figura 1 - Bairro da Várzea em destaque no Município do Recife

Figura 2 - Objeto de Estudo - Igreja de Nossa Senhora do Rosário

2.2. Materiais e Equipamentos

- Estação Total GPT 3200 N/NM (precisão angular de 5" e precisão linear 5mm + 5ppm, classificada de acordo com NBR 13133 (1994) de precisão média)
- Apoio logístico para a utilização da Estação Total e respectivos acessórios
- Softwares:

- AutoCAD Student 2015 da empresa Autodesk é um software gratuito do tipo CAD computeraided design ou projeto assistido por computador. É utilizado principalmente para a elaboração de peças de desenho técnico em duas dimensões (2D) e para criação de modelos tridimensionais (3D).
- AstGeoTop (GANÉS, 2015). O software AstGeoTop foi criado e desenvolvido pelo professor e pesquisador Dr. Sílvio Jacks dos Anjos Garnés, atualmente leciona no departamento de Engenharia Cartográfica, na Universidade Federal de Pernambuco. O AstGeoTop é basicamente um aplicativo em versões modulares, abordam os temas de: Astronomia, Geodésia, Topografia, Cadastro, Metrologia, Estatística e Hidrologia.
- **Fotografias:**As fotografias terrestres não métricas utilizadas foram adquiridas por meio de um aparelho celular, o Sony Xperia Z3 Compact, que possui uma câmera de 20,7 megapixels com uma resolução de 5248x3936 pixels.

• Imagens do Google Earth:

Google Earth é um programa gratuito que possibilita visualizar as mais variadas imagens da superfície da Terra, onde todo o conteúdo geográfico é confeccionado com imagens feitas via satélite, trazendo a representação de como são determinados pontos da superfície terrestre.

2.3. Métodos

2.3.1. Discretização dos pontos das Fachadas

Na discretização dos pontos de detalhes em SILVA et. al. (2004) descreve-se que é necessário a definição de Pontos- objeto, sendo estes pontos detalhes das edificações, pontos de limites ou pontos implantados nas suas imediações, ou seja, pontos discretizadores do objeto, entendido como estruturas, cascas, camadas, entre outras. Estes pontos são definidos por sua localização e monumentalização.

Os métodos utilizados para levantamentos de detalhes com o emprego da Estação Total ou Teodolitos, são basicamente (KAHMEN; FAIG, 1998): a interseção a vante, e irradiação- método polar e interseção linear. Os pontos de detalhes identificados, neste trabalho, foram principalmente as quinas das portas, janelas e das estruturas das sacadas, a interseção entre os semicírculos, centros de circunferência, a interseção entre semicírculos e seguimentos retilíneos, a interseção de arestas, situados na parte superior da edificação e nas bordas da edificação. E para as janelas circulares foram indicados além do centro da circunferência, mais três pontos na borda para ajudar no seu delineamento.

Os métodos utilizados para levantamentos de detalhes com o emprego da Estação Total ou Teodolitos, são basicamente (KAHMEN; FAIG, 1998): a interseção a vante, irradiação e interseção linear.

Segundo Erba, et al. (2005), recomenda-se o emprego de poligonal fechada e poligonal apoiada, para amarrar pontos de detalhes a um sistema de referência por meio da medição de uma direção e uma distância, utilizando-se para isto o método da irradiação.

Partindo-se de uma poligonal fechada e das coordenadas planimétricas e altitudes de seus respectivos vértices (Tabela 1) e apresentados em (SILVA et al., 2016), poligonal esta implantada ao redor da Igreja de Nossa Senhora do Rosário, pôde-se realizar os métodos para obtenção dos pontos de detalhes. Utilizou –se o método de interseção a vante e o método polar (irradiação) para desenvolvimento deste trabalho. Ressalta-se que as altitudes dos pontos objeto foram determinadas a partir de uma Referência de Nível implantada em frente da Igreja de Nossa Senhora do Rosário.

Tabela 1: Coordenadas Topocêntricas Locais SIRGAS2000 dos vértices IV3 e IV5 e respectivos desvios padrão.

Estação	Ponto Visado σx		Coordenada X (m)		Coordenada Y (m)	Altitude	
IV3	IV4	0,0014	146986,1203	0,0053	261281,1884	10,89050	
IV5	IV6	0,0058	146957,3545	0,0051	261290,1857	11,06092	

• Método da Interseção a Vante

O método da interseção a vante é recomendado em casos como, por exemplo, quando os pontos-objeto não são de fácil acesso, fazendo necessária a utilização de métodos trigonométricos para determiná-los (KAHMEN; FAIG, 1988). De modo que o método em que a interseção a vante é aplicado, medem-se as direções para o ponto de detalhe em que se deseja determinar as coordenadas, a partir de pontos de coordenadas conhecidas.

A Figura 4 representa pontos de coordenadas conhecidas, IV5(X5, Y5) e IV3(X3, Y3), que a partir delas podese determinar os ângulos α e β e calcular as coordenadas do ponto materializado pela Referência de Nível RNNSR (Xrnnsr, Yrnnsr).

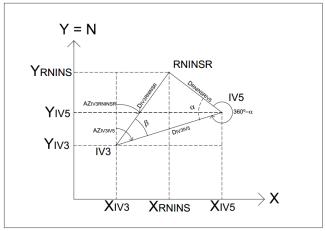


Figura 4 - Método da Interseção a Vante (com dois ângulos α e β).

Em (TENÓRIO; SEIXAS, 2008) é descrito um exemplo de determinação de pontos de detalhes de fachadas de edificação, utilizando-se o método da inteserção a vante a partir dos vértices de uma poligonal fechada, implantada no entorno de uma quadra cadastral.

• Método da Irradiação (Método Polar)

Segundo ESPARTEL (1977), o método da irradiação também é conhecido como método da decomposição em triângulos ou das coordenadas polares. É empregado na avaliação de pequenas superfícies relativamente planas. Que consiste em um processo que utiliza a definição de pontos-objeto por meio de medição de coordenadas polares (ângulos e distâncias) a partir de pontos com coordenadas conhecidas. A amarração ao Sistema de Referência é realizada através de dois pontos que integrem o sistema ou por um ponto e um azimute.

O método de irradiação é o procedimento mais utilizado para "amarrar" pontos de detalhes a um Sistema de Referência por meio de uma direção e uma distância, determinando as coordenadas de vários pontos a partir de um ponto de coordenadas conhecidas, chamado estação ocupada e um ponto de Ré.

E segundo Veiga et. al. (2012), neste método o equipamento fica estacionado sobre um vértice e faz-se a "varredura" dos elementos de interesse próximos ao vértice ocupado, medindo direções horizontais, ângulos verticais e distâncias inclinadas para cada elemento a ser representado.

A Figura 5 ilustra o método da irradiação simples na planimetria.

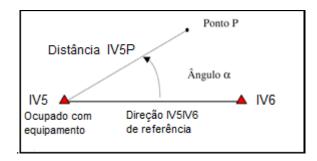


Figura 5 - Método da Irradiação.

Para o trabalho realizado foi empregado o Software AstGeoTop 2016, módulo "Levantamento Planialtimétrico" para o processamento de dados, obtendo-se as coordenadas planimétricas e altitudes dos pontos objeto determinados por irradiações simples e duplas, estas últimas quando possíveis.

• Nivelamento Trigonométrico

O método do nivelamento trigonométrico baseia-se na resolução de um triângulo retângulo (ESPARTEL, 1987). Este método foi realizado com o auxílio de um prisma instalado em um bastão para os pontos-objeto acessíveis, sendo importante então a medição da altura do instrumento e da altura do prisma. Para os pontos-objeto inacessíveis utilizouse o método do pulso para a determinação das distâncias inclinadas, não sendo necessário mais a medição da altura dos

pontos observados. Para os dois casos, o método é realizado instalando-se a estação total em um tripé sobre um vértice com altitude ou cota conhecida. Neste trabalho a altitude dos vértices IV3 e IV5 foram obtidas por meio deste método a partir de visadas realizadas a um prisma instalado na RNNSR. A Tabela 2 apresenta as coordenadas planimétricas da Referência de Nível obtidas pelo método de interseção a vante e respectiva altitude obtida com o emprego do método do nivelamento geométrico discutido em (SILVA et al., 2016).

Tabela 2: Coordenadas Planimétricas da Referência de Nível RNRSR e respectiva altitude

Tabela da Interseção a vante para o RNNSR								
Alvo	X (m)	sigma X (m)	Y(m)	sigma Y(m)	H(m)	mm/Km		
RNNSR	146959,235	0,00586	261267,1564	0,00643	10,81149	0,00948		

As altitudes dos pontos de detalhes foram determinadas a partir da aquisição das distâncias inclinadas, ângulos verticais zenitais, além da altura do emissor (instrumento) e do refletor (prisma).

2.3.2. Emprego do Software AutoCAD 2D

A aplicação do AutoCAD para o desenvolvimento do trabalho consistiu na elaboração dos *croquis*, ou basicamente no "decalque" das fotografias na plataforma. Assim foi possível desenvolver os desenhos das fachadas de maneira a identificar suas diferentes feições para que posteriormente foi-se realizado a indicação dos pontos de detalhes em campo.

Para o desenvolvimento dos *croquis* foi necessário importar uma imagem para o AutoCAD contendo o objeto, as fachadas da Igreja, para assim servir de base para a representação gráfica. Em seguida com a criação de 02 *layers*, um para imagem e outro para o *croqui*, pôde-se iniciar o desenho com os comandos simples como: *Rectangle*, *Circle* ou simplesmente iniciar com o comando *Line*. Para uma melhor representação também foram usados outros comandos mais elaborados como: *Arc* (criar arcos), *Ellipse* (criar elipse), *Spline* (criar linhas curvas), *Mirror* (comando para espelhar objetos), *Offset* (utilizado preferencialmente para as linhas, dando-lhes espaçamentos iguais designados pelo usuário), *Trim* (comando para "cortar" objetos), *Extend* (estender objetos).

Além da confecção dos *croquis*, o AutoCAD foi utilizado para inserir os pontos de detalhes, pós processados, obtidos com o método da irradiação e /ou interseção a vante, para que posteriormente fossem exportados para o *Google Sketchup* para a modelagem 3D da Igreja de Nossa Senhora do Rosário.

A modelagem tridimensional da Igreja de Nossa Senhora do Rosário pode ser realizada a partir de um conjunto de pontos exportados do AutoCAD, que, por conseguinte usa-se como base para que as quatro fachadas sejam modeladas em software CAD 3D. E, por conseguinte se fez a maquete eletrônica aplicando as devidas texturas.

3. RESULTADOS E DISCUSSÕES

3.1. Discretização dos Pontos das Fachadas

Os pontos de detalhes identificados, neste trabalho, foram principalmente as quinas das portas, janelas e das estruturas das sacadas, a interseção entre os semicírculos, centros de circunferências, a interseção de semicírculos e seguimentos retilíneos, a interseção de arestas, situados na parte superior da edificação e nas bordas da edificação. E para as janelas circulares foram indicados além do centro da circunferência, mais três pontos na borda para ajudar no seu traçado. A Figura 3 ilustra um esboço da fachada principal da Igreja e seus respectivos detalhes, utilizando-se uma fotografia como base e o software AutoCAD 2D para a identificação dos pontos de detalhes a serem medidos. Os pontos representados em vermelho foram selecionados para a medição dos detalhes da borda da fachada principal da Igreja. Para evitar a duplicação de pontos de medição utilizou-se da simetria dos elementos geométricos situados na beirada superior da fachada. (

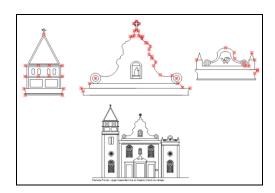


Figura 3 – Área de Estudo e discretização dos pontos na fachada frontal, executada no AutoCad 2D.

3.2. Método de Irradiação Dupla e Interseção a Vante

As densificações dos Pontos-objeto das fachadas foram obtidas a partir de medições direitas e indiretas com o uso de uma estação total Topcon GPT 3200N para representação do seu entorno, isto é, apresentar as coordenadas dos pontos de bordas da fachada frontal da Igreja de nossa senhora do rosário. O método utilizado para o levantamento destes pontos foi o método da irradiação dupla. As coordenadas obtidas a partir das medições realizadas nos dois vértices ocupados (IV5 e IV3) pela Estação Total durante a realização do método da irradiação foram confrontadas.

O procedimento adotado para obter os ângulos horizontais horários, ângulos verticais zenitais e as distâncias inclinadas dos pontos que formam a borda, consiste em instalar a Estação Total no vértice da poligonal de apoio IV5 e realizar a orientação inicial no vértice IV6, efetuando assim, as irradiações. Por conseguinte, foi realizada as medições no vértice IV3, onde o equipamento foi instalado e orientado a partir do vértice IV5. Tendo assim, um levantamento dos pontos-objeto pelo método da irradiação dupla.

Assim foram feitas 54 irradiações com o instrumento localizado no ponto da poligonal de apoio IV5, onde se fez necessário a medição em uma das quinas com o auxílio do conjunto de bastão e prisma para obtenção do plano de referência fazendo-se medição direta e inversa. E 27 medições no vértice IV3.

A Tabela 3 apresenta as coordenadas obtidas a partir dos vértices IV5 e IV3 e suas respectivas discrepâncias nas coordenadas X, Y e H. De modo que as mesmas apresentem convergências nas suas coordenadas obtidas pelos métodos de interseção a vante e método da irradiação.

Tabela 3: Com as Coordenadas das duas estações (IV5 e IV3) e suas Discrepâncias

Tabela 3 - COORDENADAS 3D PROCESSADAS NO ASTGEOTOP 2016 E REPECTIVAS DISCREPÂNCIA UNIDADES EM METROS											
	ESTAC	CÃO IV5									
PI	146947,9930	261262,2750	12,4900								
P2	146948,0380	261262,2440	11,3400								
P3	146948,0210	261262,1380	20,0680								
P4	146947,9720	261262,3610	20,2420								
P5	146947,9650	261262,3930	20,3070						DISCI	REPÂNCIAS	
P6	146948,0260	261262,1180	21,1480		ESTAC	CÃO IV3			Х	Y	h
P7	146948,1120	261261,8710	21,7920	P7	146948,6030	261262,1240	20,8740	P7	0,4910	0,2530	-0,9180
P8	146948,3810	261261,9380	20,6500	P8	146948,3710	261261,9550	20,6470	P8	-0,0100	0,0170	-0,0030
P9	146948,3690	261261,9010	20,9010	P9	146950,0240	261262,5790	20,5720	P9	1,6550	0,6780	-0,3290
P10	146948,6550	261261,7750	20,6580								-
PII	146949,3240	261261,4120	21,1540								
P12	146949,4730	261261,3390	21,8140								
P13	146950,0300	261261,1010	22,1480								
P14	146951,6560	261260,0720	21,1540	P14	146951,9880	261259,9220	21,1440	P14	0,3320	-0,1500	-0,0100
P15	146950,5590	261260,5650	20,8100	P15	146952,0370	261260,2940	20,7860	P15	1,4780	-0,2710	-0,0240
P16	146962,3830	261254,2000	20,9560	P16	146962,5170	261254,9490	22,0780	P16	0,1340	0,7490	1,1220
P17	146961,9360	261254,4530	20,4680	P17	146961,8210	261254,5330	20,4260	P17	-0,1150	0,0800	-0,0420
P18	146950,5650	261260,1490	21,2350				•				
P19	146952,3180	261259,7520	21,4200								
P20	146953,2320	261259,3250	21,8880	P20	146953,2240	261259,3220	21,8910	P20	-0,0080	-0,0030	0,0030
P21	146953,6420	261259,0070	22,2100	P21	146953,952	261259,244	22,1	P21	0,3100	0,2370	-0,1100
P22	146954,4090	261258,5750	22,2070								
P23	146955,2980	261258,0760	23,4070	P23	146955,2900	261258,0800	23,3840	P23	-0,0080	0,0040	-0,0230
P25	146960,3110	261258,0860	24,1660	P25	146955,4240	261258,0140	24,1690	P25	-4,8870	-0,0720	0,0030
P24	146959,9660	261258,2090	23,8100								
P26	146955,4470	261258,0030	24,1650	P26	146955,4400	261258,0080	24,3580	P26	-0,0070	0,0050	0,1930
P27	146955,4350	261257,8000	24,4470	P27	146955,7440	261257,8450	24,6590	P27	0,3090	0,0450	0,2120
P28	146955,7580	261257,8340	24,5810	P28	146955,7500	261257,8390	25,2120	P28	-0,0080	0,0050	0,6310
P29	146955,6270	261257,9100	25,5140								
P30	146955,9150	261257,7690	25,8090								
P31	146955,9250	261257,7630	25,9330								
P32	146956,5380	261257,4420	26,3350								
P33	146956,4500	261257,4760	26,4720	P33	146956,5100	261257,4560	26,3300	P33	0,0600	-0,0200	-0,1420
P36	146956,2840	261257,5580	26,1370								
P37	146956,8330	261256,9110	28,5860								
P38	146956,5440	261257,0760	28,2540	P38	146956,5320	261257,0810	28,2560	P38	-0,0120	0,0050	0,0020
P39	146955,9470	261256,7750	28,2480	P39	146957,0980	261256,7580	28,2420	P39	1,1510	-0,0170	-0,0060
P40	146956,7430	261257,2520	27,2540	P40	146956,7310	261257,2680	27,2520	P40	-0,0120	0,0160	-0,0020
P41	146957,1710	261257,0260	27,2590	P41	146957,1580	261256,9890	27,2570	P41	-0,0130	-0,0370	-0,0020
P42	146957,3480	261257,0460	26,5780								
P43	146956,8320	261256,9230	27,4670	P43	146956,8090	261256,9330	27,4700	P43	-0,0230	0,0100	0,0030
P44	146961,2770	261254,8850	21,4200								
P45	146961,4930	261254,6860	22,7500	P45	146961,4880	261254,6940	22,7450	P45	-0,0050	0,0080	-0,0050
P46	146961,4820	261254,4020	23,2880	P46	146961,4170	261254,9190	23,1210	P46	0,5170	-0,1670	-0,1670
P47	146960,8270	261253,3520	26,2100								
P48	146962,2120	261254,2030	26,2100	P48	146962,1920	261254,2280	26,1980	P48	0,0250	-0,0120	-0,0120
P49	146963,6470	261253,3970	26,2300	P49	146963,6160	261253,4360	26,2150	P49	0,0390	-0,0150	-0,0150
P50	146963,8370	261253,5460	24,1690								
P51	146962,1980	261254,4760	24,1640	P51	146962,1850	261254,4760	24,1530	P51	0,0000	-0,0110	-0,0110
P52	146960,6810	261253,5530	24,1630	P52	146963,7810	261253,6020	24,1520	P52	0,0490	-0,0110	-0,0110
P53	146964,5930	261253,1620	23,1200	P53	146964,5530	261253,0550	23,1430	P53	-0,1070	0,0230	0,0230
P54	146964,3970	261253,1250	22,7480	P54	146964,3890	261253,0920	22,3410	P54	-0,0330	-0,4070	-0,4070

Observando a Tabela 3 pode—se notar que há pontos com discrepâncias métricas, e outros com discrepâncias centimétricas e milimétricas. Isso ocorre, pois, os pontos apresentados acima são Pontos de Borda e por essa razão a tomada de suas medidas ficam ineficientes. Quando a tomada de pontos é feita em uma quina e/ou canto as medidas dos ângulos convergem e suas coordenadas se expõem com pequenas discrepâncias.

Para um resultado que melhor se adequa para a obtenção das coordenadas, a utilização do método da irradiação, realizado a partir dos vértices de coordenadas conhecidas IV5 e IV3, pôde-se ser feita a partir das medições diretas com as medidas dos ângulos horizontais horários, ângulos zenitais, e distâncias inclinadas. A Estação Total foi instalada no vértice IV5, em seguida foi orientado a partir do vértice IV6, utilizando-se o sistema bastão e prisma. Posteriormente, realizou-se as medidas dos ângulos em seus respectivos pontos de detalhes.

No software AstGeoTop no módulo "interseção direta (a vante) " a realização do processamento dos dados é também de forma eficiente e rápida.

Assim de maneira simples a construção da maquete 3D utilizando as coordenadas obtidas pelos métodos, seja irradiação ou interseção, podem apresentar as diversas feições da arquitetura da Igreja.

4. CONCLUSÕES

A reconstrução 3D digital das formas arquitetônicas constitui um dos elementos para a documentação e preservação de objetos, monumentos e edificações. De maneira que a documentação das formas arquitetônicas é bastante importante para a preservação e uma possível restauração quando sofrem interferência do tempo ou até mesmo de revitalizações urbanas. Assim, a Topografia advém de métodos de obtenção de coordenadas tridimensionais para confecção de maquetes para representação das feições da edificação.

De uma maneira geral o emprego dos métodos apresentados, nesse trabalho, utilizando uma Estação Total, para a obtenção de coordenadas tridimensionais, pode ser mais explorado do que a utilização da mesma para uma simples localização do espaço. Podendo repercutir nas diversas obras arquitetônicas de pequeno, médio e/ou grande porte.

Fica evidente a importância dos métodos de determinação de coordenadas com emprego da Estação Total e ferramentas do desenho técnico, do tipo CAD, para a representação de estruturas arquitetônicas, neste trabalho, estruturas da Igreja Nossa Senhora do Rosário. Para os pontos de bordas que o método da irradiação dupla não obteve êxito, recomenda –se o método de interseção a vante.

Agradecimentos

Ao projeto PQ-Multiusuários Edital 2014 – PROPESQ/UFPE.

Aos Estudantes do Curso de Engenharia Cartográfica da UFPE pelo auxílio nos levantamentos de campo: Maria Luciana da Silva, Débora Natália de Oliveira Almeida, Gabriel Santos da Silva, Ronald Machado Barcelos de Melo, Lucas Gonzales Lima Pereira Calado e Fábio Vinícius Marley Santos Lima, Juarez António da Silva Júnior.

À Universidade Federal de Pernambuco, ao Laboratório de Geodésia – LAGEO e ao Laboratório de Topografia – LATOP.

Ao Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco, Campus Recife.

REFERÊNCIAS BIBLIOGRÁFICAS

SPARTEL, L. Curso de Topografia. Porto Alegre, RS: Editora Globo. 7^a. Ed.1980

ERBA, D. E. (org.), THUM, A. B., SILVA, C. A. U., SOUZA, G. C., VERONEZ, M. R., LEANDRO, R. F., MAIA, T. C. B. **Topografia para estudantes de Arquitetura, Engenharia e Geologia.** São Leopoldo, RS: Unisinos, 2005.

SILVA, G.P.; SEIXAS, A. de. Abordagem Geodésica/Topográfica Para A Definição Do Sistema De Referência Para Locação De Edificações Prediais. V Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação, Recife-PE, 2014.

SILVA, T.F.; SEIXAS, A.; ROMÃO, V. M. Conceituação de campos de pontos na medição de deformação de objetos. V Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação, Recife-PE, 2014.

GAMA, L. F.; DE SEIXAS, A.; TENÓRIO, B. C. Implantação e Interligação de Campo de Pontos Planimétricos de Referência para o Georreferenciamento de Estruturas Arquitetônicas. II Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação, Recife – PE, 2008.

SILVA, T. R. F., NASCIMENTO, C. R.; SEIXAS, A. de. Levantamento Topográfico Planialtimétrico da Igreja Nossa Senhora do Rosário, Bairro da Várzea, Recife - Pernambuco e seu entorno. Artigo submetido ao VI Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação, Recife-PE, 2016.

GARNÉS, S. J. A. Software: **ASTGEOTOP**. Versão 2016. Recife-PE: Departamento de Engenharia Cartográfica. Universidade Federal de Pernambuco, 2015.

KAHMEN, H.; FAIG, W. Surveying. Berlin/New York, Walter de Gruyter, 1988.

TENÓRIO, Bárbara; DE SEIXAS, A. Reconstrução Tridimensional de Superfícies Topográficas Terrestres e Obras Arquitetônicas no Sítio Histórico de Olinda. II Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação, Recife-PE, 2008.